Self Studies

Mathematics Test-12

Result Self Studies

Mathematics Test-12
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    4 / -1

    A line with positive direction cosines passes through the point \(P(2,-1,2)\) and makes equal angles with the coordinate axes. The line meets the plane \(2 x+y+z=9\) at point \(Q\). The length of the line segment \(P Q\) equals:

    Solution

    As we know that,

    The equation of the line passing through two points \({P}\left(x_1, y_1, z_1\right)\) and \({Q}\left(x_2, y_2, z_2\right)\) are given by

    \(\frac{x_2-x_1}{{PQ}}, \frac{y_2-y_1}{{PQ}}, \frac{z_2-z_1}{{PQ}}\)

    Equation of the line is,

    \(\frac{x-2}{1}=\frac{y+1}{1}=\frac{z-2}{1}=r \)

    \(\Rightarrow x=r+2, y=r-1, z=r+2\)

    The point \(({r}+2, {r}-1, {r}+2)\) lies on the plane \(2 {x}+{y}+{z}=9\) is, 

    \(2({r}+2)+{r}-1+{r}+2=9\) 

    \( \Rightarrow r=1\)

    So, the coordinate of \({Q}\) are \((3,0,3)\) and thus,

    \(P Q=\sqrt{(3-2)^2+(0+1)^2+(3-2)^2}=\sqrt{3}\)

  • Question 2
    4 / -1

    What is the minimum value of |x - 1|, where x ∈ R?

    Solution

    Given:

    f(x) = |x - 1|

    Since the minimum value of modulus functions is zero.

    So, the minimum value of |x - 1|, where x ∈ R is 0.

  • Question 3
    4 / -1

    Find the sum of the series whose nth term is:

    n(n+1)(n+4)

    Solution

    Given,

    \(\mathrm{T}_{\mathrm{n}}=\mathrm{n}(\mathrm{n}+1)(\mathrm{n}+4)\)

    \(\mathrm{T}_{\mathrm{n}}=\mathrm{n}^{3}+5 \mathrm{n}^{2}+4 \mathrm{n}\)

    Then, the sum of the series,

    \(\mathrm{S}_{\mathrm{n}}=\sum \mathrm{n}^{3}+5 \sum \mathrm{n}^{2}+4 \sum \mathrm{n}\)

    \(=\left[\frac{\mathrm{n}(\mathrm{n}+1)}{2}\right]^{2}+\frac{5 \mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)}{8}+\frac{4 \mathrm{n}(\mathrm{n}+1)}{2}\)

    \(=\frac{\mathrm{n}(\mathrm{n}+1)}{2}\left[\frac{\mathrm{n}^{2}+\mathrm{n}}{2}+\frac{5}{3}(2 \mathrm{n}+1)+4\right]\)

    \(=\frac{\mathrm{n}(\mathrm{n}+1)}{2}\left[\frac{3 \mathrm{n}^{2}+23 \mathrm{n}+34}{6}\right]\)

  • Question 4
    4 / -1
    Form the differential equation of \(y=a e^{3 x} \cos (x+b)\) Where \(y^{\prime}=\frac{d y}{d x}\) and \(y^{n}=\frac{d^{2} y}{d x^{2}}\)?
    Solution

    Given,

    \(y=a e^{3 x} \cos (x+b)\)

    There are two constants a and b so differentiate two times Differentiating wr.t \(x\),

    We get,

    \(y^{\prime}=3 a e^{3 x} \cos (x+b)-a e^{3 x} \sin (x+b)\)

    \(\Rightarrow y^{\prime}=3 y-a e^{3 x} \sin (x+b)\)

    \(\Rightarrow a e^{3 x} \sin (x+b)=3 y-y^{\prime}\)

    Differentiating again w.r.t \({x}\),

    We get,

    \( 3 {ae}^{3 x} \sin (x+b)+a e^{3 x} \cos (x+b)=3 y^{\prime}-y^{\prime \prime}\)

    \(\Rightarrow 3\left(3 y-y^{\prime}\right)+y-3 y^{\prime}-y^{n}=0 \)

    \(\Rightarrow 9 y-3 y^{\prime}+y-3 y^{\prime}-y^{n}=0 \)

    \(\Rightarrow y^{\prime \prime}+6 y^{\prime}-10 y=0\)

  • Question 5
    4 / -1
    Let \(f(x)=\left\{\begin{array}{cc}\max \left\{|x|, x^{2}\right\}, & |x| \leq 2 \\ 8-2|x|, & 2<|x| \leq 4\end{array}\right.\)
    Let \(S\) be the set of points in the interval \((-4,4)\) at which \(f\) is not differentiable. Then \(S\) :
    Solution

    This problem is solved in a graphical method.

    From question, the equation and condition given is:

    \(f(x)=\left\{\begin{array}{cc}\max \left\{|x|, x^{2}\right\}, & |x| \leq 2 \\ 8-2|x|, & 2<|x| \leq 4\end{array}\right.\)

    Let us draw the graph of \(\mathrm{y}=\mathrm{f}(\mathrm{x})\),

    From question, for \(|x| \leq 2\), then \(f(x)=\max \left\{|x|, x^{2}\right\}\),

    Let us first draw the graph of \(y=|x|\) and \(y=x^{2}\) as shown in the following figure.

    From graph, \(y=|x|\) and \(y=x^{2}\) intersect at \(x=-1,0\), and 1 .

    Now, the graph of \(f(x)=\max \left\{|x|, x^{2}\right\}\), for \(|x| \leq 2\).

    From question, for \(2<|x| \leq 4\), then \(f(x)=8-2|x|\),

    Since, the \(x\) is in modulus, the value of \(x\) can positive or negative.

    So,

    \(\Rightarrow f(x)=8-2|x|=\left\{\begin{array}{lc}8-2 x, & x \in(2,4] \\ 8+2 x, & x \in[-4,-2)\end{array}\right.\)

    The graph formed for the obtained equation is given below,

    So, the graph of y = f(x) is,

    From the graph it is clear that at x = -2, -1, 0, 1, 2 the curve has sharp edges and so at these points f is not differentiable.

  • Question 6
    4 / -1

    \(A B\) is a chord of the circle and \(A O C\) is its diameter such that angle \(A C B\) \(=50^{\circ}\). If \(\mathrm{AT}\) is the tangent to the circle at the point \(\mathrm{A}\), then \(\angle \mathrm{BAT}\) is equal to:

    Solution

    As per the given question:

    \(\angle A B C=90\) (Angle in Semicircle)
    In \(\triangle \mathrm{ACB}\)
    \(\angle A+\angle B+\angle C=180^{\circ}\)
    \(\angle A=180^{\circ}-\left(90^{\circ}+50^{\circ}\right)\)
    \(\angle A=40^{\circ}\)
    Or \(\angle O A B=40^{\circ}\)
    \(\therefore \angle B A T=90^{\circ}-40^{\circ}=50^{\circ}\)
     
  • Question 7
    4 / -1

    If \({ }^{\mathrm{n}} \mathrm{P}_{\mathrm{r}}=720\) and \({ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}=120\), then the value of \(\mathrm{r}\) is:

    Solution

    Permutation: Permutation is defined as an arrangement of \(r\) things that can be done out of total \(n\) things. This is denoted by \({ }^{\mathrm{n}} \mathrm{P}_{\mathrm{r}}\).

    \({ }^{\mathrm{n}} \mathrm{P}_{\mathrm{r}}=\frac{\mathrm{n} !}{(\mathrm{n}-\mathrm{r}) !}\)

    \(720=\frac{n !}{(n-r) !}\)

    \((n-r) !=\frac{n !}{720}\)

    Combination: The number of selections of r objects from the given \(n\) objects is denoted by \({ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}\).

    \({ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}=\frac{\mathrm{n} !}{\mathrm{r} !(\mathrm{n}-\mathrm{r}) !}\)

    \(120=\frac{n !}{r !(n-r) !}\)

    Putting the value of \((\mathrm{n}-\mathrm{r}) !\) we get

    \(120=\frac{n !}{r ! \frac{n !}{720}}\)

    \(r !=\frac{720}{120}=6\)

    \(r !=3 \times 2 \times 1\)

    \(r=3!\)

  • Question 8
    4 / -1

    The second degree equation \(2 x^{2}+2 y^{2}-5 x-7 y-3=0\) represents:

    Solution

    As we know,

    Identification of curves represented by the general equation of the second degree:

    Let a general equation of second degree in \(x\) and \(y\) be \(a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0\)...(1).

    Then this equation represents,

    1. A parabola if \(\Delta \neq 0\) and \(h^{2}=a b\)

    2. An ellipse if \(\Delta \neq 0\) and \(h^{2}>a b\)

    3. A hyperbola if \(Δ ≠ 0\) and \(h^2 > ab\)

    4. A pair of straight line or empty set if \(\Delta=0\) and \(h^{2} \geq a b\)

    5. A unique point if \(\Delta=0\) and \(h^2 < ab\)

    6. A circle if \(a = b ≠ 0, h = 0\) and \(g^2 + f^2 -ac > 0\)

    The given equation is \(2 x^{2}+2 y^{2}-5 x-7 y-3=0\).

    Comparing it wth the equation (1) we get,

    \(a=2, h=0, b=2, g=-(\frac{5 }{ 2}), f=-(\frac{7 }{ 2}), c=-3\)

    As, \(a=b=2(>0), h=0\)

    As we know,

    \(g^2 + f^2 -ac > 0\)

    \(\therefore (-\frac{5 }{ 2})^2+ (-\frac{7 }{ 2})^2-(2 \times -3)>0\)

    \(\Rightarrow \frac{25 }{4}+ \frac{49}{4}+6>0\)

    \(\Rightarrow \frac{25 +49+24}{4}>0\)

    \(\Rightarrow \frac{98}{4}>0\)

    \(\Rightarrow 24.5>0\)

    So, the given equation represents a circle.

  • Question 9
    4 / -1

    Find the number of elements in the union of 4 sets A, B, C and D having 150, 180, 210 and 240 elements respectively, given that each pair of sets has 15 elements in common. Each triple of sets has 3 elements in common and A ∩ B ∩ C ∩ D = ϕ.

    Solution

    Given: The four sets have 150, 180, 210 and 240 elements respectively

    n(A) = 150

    n(B) = 180

    n(C) = 210

    n(D) = 240

    Each pair of sets has 15 elements

    n(A ∩ B) = 15

    n(A ∩ C) = 15

    n(A ∩ D) = 15

    n(B ∩ C) = 15

    n(B ∩ D) = 15

    n(C ∩ D) = 15

    Each triple of sets has 3 elements

    n(A ∩ B ∩ C) = 3

    n(A ∩ B ∩ D) = 3

    n(A ∩ C ∩ D) = 3

    n(B ∩ C ∩ D) = 3

    A ∩ B ∩ C ∩ D = ϕ

    n(A ∩ B ∩ C ∩ D) = 0

    Now, number of elements in the union of 4 sets A, B, C and D

    n(A ∪ B ∪ C ∪ D) = n(A) + n(B) + n(C) + n(D) - n(A ∩ B) - n(A ∩ C) - n(A ∩ D) - n(B ∩ C) - n(B ∩ D) - n(C ∩ D) + n(A ∩ B ∩ C) + n(A ∩ B ∩ D) + n(A ∩ C ∩ D) + n(B ∩ C ∩ D) - n(A ∩ B ∩ C ∩ D)

    ⇒ 150 + 180 + 210 + 240 - 6 × 15 + 4 × 3 - 0

    ∴ The required number of elements is 702.

  • Question 10
    4 / -1

    \(\frac{\cos A}{1-\tan A}+\frac{\sin A}{1-\cot A}\) is equals to:

    Solution

    Given:

    \(\frac{\cos A}{1-\tan A}+\frac{\sin A}{1-\cot A}\)

    \(\frac{\cos A}{1-\tan A}+\frac{\sin A}{1-\cot A}\)

    We know that:

    \(\tan A=\frac{\sin A}{\cos A}\) and \(\cot A=\frac{\cos A}{\sin A}\)

    Therefore inserting the value of \(\tan A\) and \(\cot A\) in the given equation, we get

    \(\therefore \frac{\cos A}{1-\frac{\sin A}{\cos A}}+\frac{\sin A}{1-\frac{\cos A}{\sin A}}\)

    \(\Rightarrow \frac{\cos A}{\frac{\cos A-\sin A}{\cos A}}+\frac{\sin A}{\frac{\sin A-\cos A}{\sin A}}\)

    \(\Rightarrow \frac{\cos ^{2} A}{\cos A-\sin A}+\frac{\sin ^{2} A}{\sin A-\cos A}\)

    \(\Rightarrow \frac{\cos ^{2} A}{\cos A-\sin A}-\frac{\sin ^{2} A}{\cos A-\sin A}\)

    \(\Rightarrow \frac{\cos ^{2}-\sin ^{2} A}{\cos A-\sin A}\)

    \(\Rightarrow \frac{(\cos A-\sin A)(\cos A+\sin A)}{\cos A-\sin A}\)

    \(\Rightarrow \cos A+\sin A\)

    \(\Rightarrow \sin A+\cos A\)

    Hence, \(\sin A +\cos A\) is the answer.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now