Self Studies

Mathematics Test-13

Result Self Studies

Mathematics Test-13
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    4 / -1

    The equation of the plane which passes through the \(x\)-axis and perpendicular to the line \(\frac{(x-1)}{\cos \theta}=\frac{(y+2)}{\sin \theta}=\frac{(z-3)}{0}\) is:

    Solution

    The equation of line is,

    \(\Rightarrow \frac{(x-1)}{\cos \theta}=\frac{(y+2)}{\sin \theta}=\frac{(z-3)}{0}\)

    The plane is perpendicular to line.

    \(\therefore\) The direction ratio at normal of the plane is \((\cos \theta, \sin \theta, 0)\).

    \(\Rightarrow\) It is given that, the plane passes through \(x\)-axis then \((0,0,0)\) lies on the plane.

    \(\therefore\) The equation of the plane is

    \(\Rightarrow \cos \theta(x-0)+\sin \theta(y-0)+0(z-0)=0 \)

    \(\Rightarrow \cos \theta \cdot x+\sin \theta \cdot y=0\)

    \(\therefore\) The equation of plane is \(x \cdot \cos \theta+y \cdot \sin \theta=0\).

  • Question 2
    4 / -1

    If the sum of n terms of an AP is 300, first terms is 10 and last term is 50 then n is equal to ?

    Solution

    Given,

    First term of AP = a = 10

    Last term of AP = l = 50

    Sum of n terms of an AP = 300

    As we know,

    sum of \(n\) terms of an \(A P=S_{n}=\frac{n}{2} \times[a+l]\)

    \(\Rightarrow 300=\frac{\mathrm{n}}{2}(10+50)\)

    \(\Rightarrow 300=\frac{\mathrm{n}}{2} \times 60\)

    \(\Rightarrow 5=\frac{\mathrm{n}}{2}\)

    \(\therefore \mathrm{n}=10\)

  • Question 3
    4 / -1

    If \(X\) and \(Y\) are two sets such that \(n(X)=17, n(Y)=23\) and \(n(X \cup Y)=38,\) find \(n(X \cap Y)\)

    Solution

    Given,

    \(n(X)=17, n(Y)=23, n(X \cup Y)=38\)

    We know that,

    \(\Rightarrow\)\(n(X \cup Y)=n(X)+n(Y)-n(X \cap Y)\)

    \(\therefore 38=17+23-n(X \cap Y)\)

    \(\Rightarrow\)\(n(X \cap Y)=40-38=2\)

    \(\Rightarrow\)\(n(X \cap Y)=2\)

  • Question 4
    4 / -1

    The argument of the complex number \(\left(\frac{i}{5}+\frac{5}{i}\right)\) is:

    Solution

    Given:

    \(\left(\frac{i}{5}+\frac{5}{i}\right)\)

    We know,

    \(z=x+i y\)

    \(\arg (z)=\arg (x+i y)=\tan ^{-1}(\frac{y }{x})\)

    Therefore, the argument \(\theta\) is represented as:

    \(\theta=\tan ^{-1}(\frac{{y} }{ {x}})\)

    \(\tan \left(\frac{\pi}{2}\right)=\) infinity

    \(i^{2}=-1\)

    Let \(z=\left(\frac{i}{5}+\frac{5}{i}\right)\)

    \(z=\frac{i}{5}+\frac{5 i}{i^{2}}\)

    \(z=\frac{i}{5}-5 i\)

    \(=\frac{-24}{5} {i}\)

    So, \(\arg (z)=\tan ^{-1}\left(\frac{\frac{-24} { 5}}{0}\right)\)

    \(=-\tan ^{-1} \infty\)

    \(=-\frac{\pi}{2}\)

  • Question 5
    4 / -1

    If the equation \(6 x^2+4 x-a=0\) has equal roots, then choose the correct option.

    Solution

    Given:

    \(6 x^2+4 x-a=0\)

    The roots of the given quadratic equation are real and equal.

    So, the discriminant will be \(0\).

    \(b^2-4 a c=0\)

    \((4)^2-4 \times 6 \times(-a)=0\)

    \(16+24 a=0\)

    \(2+3 a=0\)

    \(3 a+2=0\)

  • Question 6
    4 / -1

    If \(p=\sec \theta-\tan \theta\) and \(q=\operatorname{cosec} \theta+\cot \theta\), then what is \(p+q(p-1)\) equal to?

    Solution

    Given:

    \(p=\sec \theta-\tan \theta\) and \(q=\operatorname{cosec} \theta+\cot \theta\)

    \({p}=\sec \theta-\tan \theta\)

    \(=\frac{1}{\cos \theta}-\frac{\sin \theta}{\cos \theta}\)

    \(=\frac{1-\sin \theta}{\cos \theta} \)

    \({q}=\operatorname{cosec} \theta+\cot \theta\)

    \(=\frac{1}{\sin \theta}+\frac{\cos \theta}{\sin \theta}\)

    \(=\frac{1+\cos \theta}{\sin \theta} \)

    \({p}+{q}({p}-1)=\frac{1-\sin \theta}{\cos \theta}+\frac{1+\cos \theta}{\sin \theta}\left(\frac{1-\sin \theta}{\cos \theta}-1\right) \)

    \(=\frac{1-\sin \theta}{\cos \theta}+\frac{1+\cos \theta}{\sin \theta}\left(\frac{1-\sin \theta-\cos \theta}{\cos \theta}\right) \)

    \(=\frac{1-\sin \theta}{\cos \theta}+\frac{\left(1-\sin \theta-\cos \theta+\cos \theta-\sin \theta \cos \theta-\cos ^{2} \theta\right)}{\sin \theta \cos \theta} \)

    \(=\frac{\left(\sin \theta-\sin ^{2} \theta\right)+\left(1-\sin \theta-\cos \theta+\cos \theta-\sin \theta \cos \theta-\cos ^{2} \theta\right)}{\sin \theta \cos \theta} \)

    \(=\frac{-\sin \theta \cos \theta}{\sin \theta \cos \theta} \)

    \(=-1\)

  • Question 7
    4 / -1

    Find the general solution of given differential equation \(\frac{x d y}{d x}+3 y=4 x^3 ?\)

    Solution

    Given that,

    \(\Rightarrow \frac{ xdy }{ dx }+3 y =4 x ^3\)

    Now,

    \(\Rightarrow \frac{ dy }{ dx }+\frac{3 y }{ x }=4 x ^2\)

    By comparing with \(\frac{ dy }{ dx }+ Py = Q\)

    \( \Rightarrow P=\frac{3 } x \text { and } Q=4 x^2 \)

    \( \Rightarrow \text { I.F. }=e^{\int P d x}=e^{\int \frac{3}{x} d x} \)

    \(\Rightarrow \text { I.F. }=e^{3 \ln x} \)

    \( \Rightarrow \text { I.F. }=e^{\ln x^3}\)

    \( \Rightarrow \text { I.F. }=x^3\left(\because e^{\ln x}=x\right)\)

    Now general solution will be,

    \( \Rightarrow y \cdot( I \cdot F \cdot)=\int( Q \cdot( I \cdot F \cdot)) dx + c \)

    \( \Rightarrow y \cdot\left( x ^3\right)=\int\left(4 x ^2 \cdot\left( x ^3\right)\right) dx + c\)

    \( \Rightarrow x ^3 \cdot y =\int 4 x ^5 dx + c \)

    \( \Rightarrow x ^3 \cdot y =4 \frac{ x ^6}{6}+ c \)

    \( \Rightarrow x^3 \cdot y=\frac{2}{3} \cdot x^6+c\)

  • Question 8
    4 / -1

    It is given that \(x+iy =\frac{2+3 i}{2-3 i}\) then the value of \(x^{2}+y^{2}\) is:

    Solution
    Given,
    \(x+i y=\frac{2+3 i}{2-3 i}\)
    Multiply both numerator and denominator by \(2+3 i\),
    \(x+i y=\frac{2+3 i}{2-3 i} \times \frac{2+3 i}{2+3 i}\)
    \(\Rightarrow {x}+{iy}=\frac{(2+3 {i})^{2}}{4+9}\)
    \(\Rightarrow {x}+{iy}=\frac{-5}{13}+\frac{12 {i}}{13}\)......(1)
    Now,
    \(x-i y=\frac{-5}{13}-\frac{12 i}{13}\).....(2)
    Multiply equation (1) and (2), we get
    \((x+i y)(x-i y)=\frac{25}{169}+\frac{144}{169}\)
    \(\Rightarrow x^{2}+y^{2}=1\)
  • Question 9
    4 / -1

    Find two consecutive odd positive integers, sum of whose squares is \(290\).

    Solution

    Let the smaller of the two consecutive odd positive integers be \(x\). Then, the second integer will be \(x+2\). According to the question,

    \(x^2+(x+2)^2 =290\)

    \(\Rightarrow x^2+x^2+4 x+4 =290\)

    \(\Rightarrow 2 x^2+4 x-286 =0\)

    \(\Rightarrow x^2+2 x-143 =0\)

    Which is a quadratic equation in \(x\).

    Using the quadratic formula, we get

    \(x=\frac{-2 \pm \sqrt{4+572}}{2}=\frac{-2 \pm \sqrt{576}}{2}=\frac{-2 \pm 24}{2}\)

    \(\Rightarrow x=11\) or \(x=-13\)

    But \(x\) is given to be an odd positive integer.

    Therefore, \(x \neq-13, x=11\).

    Thus, the two consecutive odd integers are \(11\) and \(13\).

  • Question 10
    4 / -1

    If \(\mathrm{A}=\{1,4\}, \mathrm{B}=\{2,3\}, \mathrm{C}=\{3,5\}\) then \((\mathrm{A} \times \mathrm{B}) \cap(\mathrm{A} \times \mathrm{C})\) is equal to:

    Solution

    Given: \(\mathrm{A}=\{1,4\}, \mathrm{B}=\{2,3\}, \mathrm{C}=\{3,5\}\)

    Here, we have to find \((A \times B) \cap(A \times C)\)

    As we know that, \(A \times B=\{(a, b) \mid a \in {A}\) and \(b \in B\}\)

    \(\Rightarrow A \times B=\{(1,2),(1,3),(4,2),(4,3)\}\quad\quad\)......(1)

    \(\Rightarrow A \times C=\{(1,3),(1,5),(4,3),(4,5)\}\quad\quad\)......(2)

    From (1) and (2) we can say that,

    \(\Rightarrow(A \times B) \cap(A \times C)=\{(1,3),(4,3)\}\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now