Self Studies

Mathematics Test-14

Result Self Studies

Mathematics Test-14
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    4 / -1

    If \(\int \frac{\mathrm{xe}^{\mathrm{x}}}{\sqrt{1+\mathrm{e}^{\mathrm{x}}}} \mathrm{dx}=\mathrm{f}(\mathrm{x}) \sqrt{1+\mathrm{e}^{\mathrm{x}}}-2 \log \frac{\sqrt{1+\mathrm{e}^{\mathrm{x}}}-1}{\sqrt{1+\mathrm{e}^{\mathrm{x}}}+1}+\mathrm{C}\), then \(\mathrm{f}(\mathrm{x})\) is:

    Solution

    Given:

    \(\mathrm{I=\int \frac{x e^{x}}{\sqrt{1+e^{x}}} d x}\) .....(A)

    Take \(1+\mathrm{e}^{\mathrm{x}}=\mathrm{t}^{2} \quad \ldots .(1)\)

    Differentiating with respect to \(\mathrm{x}\), we get

    \( \mathrm{e}^{\mathrm{x}} \mathrm{dx}=2 \mathrm{tdt}\)

    From equation (1), we get

    \(\mathrm{e^{x}=t^{2}-1}\)

    So, \(\mathrm{x}=\log \left(\mathrm{t}^{2}-1\right)\)

    Now, put the above values in equation (A)

    \(\mathrm{I}=\int \frac{\log \left(\mathrm{t}^{2}-1\right)}{\sqrt{\mathrm{t}^{2}}} 2 \mathrm{tdt}\)

    \(=2 \times \int \frac{\log \left(\mathrm{t}^{2}-1\right)}{\mathrm{t}} \times \mathrm{tdt}\)

    \(=2 \int \log \left(\mathrm{t}^{2}-1\right) \mathrm{d t}\)

    Using integration by parts rule, we get

    Integration by parts:

    \( \int \mathrm{uvdx}=\mathrm{u} \int \mathrm{vdx}-\int\left(\frac{\mathrm{du}}{\mathrm{dx}} \times \int \mathrm{v} \mathrm{dx}\right) \mathrm{dx}+\mathrm{c}\)

    \(=2\left[\mathrm{\log \left(t^{2}-1\right) \times t-2 \int \frac{t^{2}}{t^{2}-1} d t}\right]\)

    \(=\mathrm{2 t \log \left(t^{2}-1\right)-4 \int\left[1+\frac{1}{t^{2}-1}\right] d t}\)

    \(=\mathrm{2 t \log \left(t^{2}-1\right)-4 t-4 \times \frac{1}{2} \log \left(\frac{t-1}{t+1}\right)+c}\)

    \(=\mathrm{2 t \log \left(t^{2}-1\right)-4 t-2 \log \left(\frac{t-1}{t+1}\right)+c}\)

    \(=\mathrm{2 t\left(\log \left(t^{2}-1\right)-2\right)-2 \log \left(\frac{t-1}{t+1}\right)+c}\)

    Resubstitute the value of \(\mathrm{t}\), we get

    \(=\mathrm{2(x-2) \sqrt{1+e^{x}}-2 \log \frac{\sqrt{1+e^{x}}-1}{\sqrt{1+e^{x}}+1}+c}\)

    \(=(2 \mathrm{x}-4) \sqrt{1+\mathrm{e}^{\mathrm{x}}}-2 \log \frac{\sqrt{1+\mathrm{e}^{\mathrm{x}}}-1}{\sqrt{1+\mathrm{e^{x}}}+1}+\mathrm{c}\).......(2)

    On comparingequation(2) with question, we get

    \(\mathrm{f(x) = 2 x-4}\)

  • Question 2
    4 / -1

    What is the \(\mathrm{n}^{\text {th }}\) term of the sequence \(1,5,9,13,17, \ldots ?\)

    Solution

    Given sequence,

    1, 5, 9, 13, 17, ...

    Difference between the first term and second term = 4

    Difference between the second term and third term = 4

    Thus, clearly it is an AP with common difference 4.

    \(\mathrm{n}^{\text {th }}\) term of the \(\mathrm{AP}=a_{n}\)

    \(a_{n}= a_{1}+(n-1) d\)

    \(\Rightarrow a_{n}=1+(n-1) 4\)

    \(\Rightarrow a_{n}=1+4 n-4\)

    \(\Rightarrow a_{n}=4 n-3\)

  • Question 3
    4 / -1
    If \({A}, {B}\) and \({C}\) are non-empty sets then the 'Intersection of sets is distributive over union of sets' is represented as:
    Solution
    Let \({A}, {B}, {C}\) be any sets.
    If we take intersection of sets, it should be distributive over union of sets. Let's take union of \({B}\) and \({C}\) i.e. \({B} \cup {C}\) and then intersect with \({A}\).
    \(\therefore\) Finally we get \(A \cap(B \cup C),\) which is same as union of intersection of \(A, B\) and \(A, C\)
    i.e. \(A \cap(B \cup C)=(A \cap B) \cup(A \cap C)\)
  • Question 4
    4 / -1

    If \(2\left[\begin{array}{ll}1 & 3 \\ 0 & x \end{array}\right]+\left[\begin{array}{ll} y & 0 \\ 1 & 2\end{array}\right]=\left[\begin{array}{ll}5 & 6 \\ 1 & 8\end{array}\right]\) then find the value of \(x+y\).

    Solution

  • Question 5
    4 / -1

    The direction consines of the line drawn from \(P (-5,3,1)\) to \(Q (1,5,-2)\) is:

    Solution

    Given,

    \(P(-5,3,1), Q(1,5,-2)\)

    Direction ratio \(P Q\),

    \(P Q =(1-(-5)) \hat{i}+(5-3) \hat{j}+(-2-1) \hat{k} \)

    \(=6 \hat{i}+2 \hat{j}-3 \hat{k}\)

    For direction cosine \(\Rightarrow \frac{P Q}{|P Q|}\)

    \(|P Q|= \sqrt{6^2+2^2+3^2}\)

    \(=\sqrt{36+4+9}=\sqrt{49} \)

    \(|P Q| =7\)

    \(\therefore\) direction cosine \(=\left(\frac{6}{7}, \frac{2}{7}, \frac{-3}{7}\right)\)

  • Question 6
    4 / -1

    If \(x,y,z\) are all different and not equal to zero and \(\left|\begin{array}{ccc}1+x & 1 & 1 \\ 1 & 1+y & 1 \\ 1 & 1 & 1+z\end{array}\right|=0\) then the value of \(x^{-1}+y^{-1}+z^{-1}\) is equal to:

    Solution

    \(\left|\begin{array}{ccc}1+x & 1 & 1 \\ 1 & 1+y & 1 \\ 1 & 1 & 1+z\end{array}\right|=0\)

    \(R_{1}=R_{1}-R_{2}\)

    \(\left|\begin{array}{ccc}x & -y & 0 \\ 1 & 1+y & 1 \\ 1 & 1 & 1+z\end{array}\right|=0\)

    \(R_{2}=R_{2}-R_{3}\)

    \(\left|\begin{array}{ccc}x & -y & 0 \\ 0 & y & -z \\ 1 & 1 & 1+z\end{array}\right|=0\)

    Now, Expanding along \(R_{1}\), we get:

    \(x[y(1+z)-(-z)]-(-y)[0-(-z)]+0=0\)

    \(\Rightarrow x[y+y z+z]+y[z]=0\)

    \(\Rightarrow x y+x y z+x z+y z=0\)

    Dividing by \({xyz}\),

    \(\frac{1}{\mathrm{z}}+1+\frac{1}{\mathrm{y}}+\frac{1}{\mathrm{x}}=0\)

    \(\Rightarrow {x}^{-1}+{y}^{-1}+{z}^{-1}=-{1}\)

  • Question 7
    4 / -1

    Consider the following in respect of a complex number \(z\):

    1. \(\overline{\left(z^{-1}\right)}=(\overline{z})^{-1}\)

    2. \(z z^{-1}=|z|^{2}\)

    Which of the above is/are correct?

    Solution

    Given:

    1. \(\overline{\left( z ^{-1}\right)}=(\overline{ z })^{-1}\)

    Let, \(z=a-i b\)

    \(\Rightarrow z ^{-1}=\frac{1}{ z }=\frac{1}{ a - ib }=\frac{ a + ib }{ a ^{2}+ b ^{2}}\) 

    \(\Rightarrow \overline{ z ^{-1}}=\frac{ a - ib }{ a ^{2}+ b ^{2}} \)     .....(i)

    \(\Rightarrow \overline{ z }= a + ib\) 

    \(\Rightarrow(\overline{ z })^{-1}=\frac{1}{\overline{ z }}=\frac{1}{ a + ib }=\frac{ a - ib }{ a ^{2}+ b ^{2}}\)     .....(ii)

    \(\Rightarrow(\overline{ z })^{-1}=\frac{1}{\overline{z}}=\frac{1}{a+ i b}=\frac{a- ib }{a^{2}+b^{2}}\)

    From equation (i) and (ii)

    Statement 1 is correct.

    2. \(z z^{-1}=|z|^{2}\)

    Consider \(z=a-i b\)

    \(\Rightarrow z^{-1}=\frac{a+i b}{a^{2}+b^{2}}\) 

    \(\Rightarrow z \cdot z^{-1}=(a-i b) \frac{a+i b}{a^{2}+b^{2}}=\frac{a^{2}+b^{2}}{a^{2}+b^{2}}=1\)

    Statement 2 is not correct.

  • Question 8
    4 / -1
    The coefficient of \(x^{5}\) in the expansion of \((1+x)^{21}+(1+x)^{22}+\ldots \ldots \ldots+(1+x)^{30}\) is _________.
    Solution
    Let,
    \(\mathrm{S}=(1+\mathrm{x})^{21}+(1+\mathrm{x})^{22}+(1+\mathrm{x})^{23}+\ldots(1+\mathrm{x})^{30} \ldots(\mathrm{i})\)
    \((1+x) \mathrm{S}=(1+\mathrm{x})^{22}+(1+\mathrm{x})^{23} \ldots(1+\mathrm{x})^{30}+(1+\mathrm{x})^{31} \ldots(\mathrm{ii})\)
    Subtracting (i) from (ii), we get
    \(\mathrm{xS}=(1+\mathrm{x})^{31}-(1+\mathrm{x})^{21}\)
    \(\mathrm{S}=\frac{(1+\mathrm{x})^{31}}{\mathrm{x}}-\frac{(1+\mathrm{x})^{21}}{\mathrm{x}}\)
    Coefficient of \(\mathrm{x}^{\mathrm{r}}\)
    \(={ }^{31} \mathrm{C}_{\mathrm{r}} \mathrm{x}^{\mathrm{r}-1}-{ }^{21} \mathrm{C}_{\mathrm{r}} \mathrm{x}^{\mathrm{r}-1}\)
    \(=\left({ }^{31} \mathrm{C}_{\mathrm{r}}-{ }^{21} \mathrm{C}_{\mathrm{r}}\right) \mathrm{x}^{\mathrm{r}-1} \ldots(\mathrm{a})\)
    Therefore, the coefficient of \(\mathrm{x}^{5}\) implies
    \(\Rightarrow\mathrm{r}-1=5\)
    \(\Rightarrow\mathrm{r}=6\)
    Substituting in (a), we get coefficient of \(\mathrm{x}^{5}\)
    \(=\left({ }^{31} \mathrm{C}_{6}-{ }^{21} \mathrm{C}_{6}\right)\)
  • Question 9
    4 / -1

    In the given circle, \(\mathrm{AB}\) is a chord and \(\mathrm{OL}\) is the perpendicular drawn to it from centre \(\mathrm{O}\). If \(A L=3.2\) units, find the length of \(A B\).

    Solution

    Given, \(AL=3.2\) units

    Since the angular bisector divides the chord into equal parts.

    \(\therefore AL=LB\)

    \(LB=3.2\) units

    \(AB= AL+LB\)

    \(\Rightarrow 3.2+3.2\)

    \(=6.4\) units

  • Question 10
    4 / -1

    A man running a racecourse notes that the sum of the distances from the two flag posts from him is always \(10~m\) and the distance between the flag posts is \(8~m\). Find the equation of the posts traced by the man.

    Solution

    Let \(A\) and \(B\) be the positions of the two flag posts and \(P(x, y)\) be the position of the man.

    Accordingly, \(PA+PB=10\)

    We know that if a point moves in a plane in such a way that the sum of its distances from two fixed points is constant, then the path is an ellipse and this constant value is equal to the length of the major axis of the ellipse.

    Therefore, the path described by the man is an ellipse where the length of the major axis is \(10~m\), while points \(A\) and \(B\) are the foci.

    Taking the origin of the coordinate plane as the center of the ellipse, while taking the major axis along the \(x\)-axis, the ellipse can be diagrammatically represented as

    The equation of the ellipse will be of the form \(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1\), where \(a\) is the semi-major axis

    Accordingly, \(2 a=10\)

    \(\Rightarrow a=5\)

    Distance between the foci \((2 c)=8\)

    \(\Rightarrow c=4\)

    On using the relation \(c=\sqrt{a^{2}-b^{2}}\), we obtain

    \(4=\sqrt{25-b^{2}}\)

    \(\Rightarrow 16=25-b^{2}\)

    \(\Rightarrow b^{2}=25-16=9\)

    Thus, the equation of the path traced by the man is \(\frac{x^{2}}{25}+\frac{y^{2}}{9}=1\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now