Self Studies

Mathematics Test-17

Result Self Studies

Mathematics Test-17
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    4 / -1
    If \(\overrightarrow{\mathrm{a}}, \overrightarrow{\mathrm{b}}\) are the vectors forming consecutive sides of a regular hexagon \(\mathrm{ABCDEF}\), then the vector representing side \(\mathrm{CD}\) is,
    Solution

    Let \(\mathrm{ABCDEF}\) be a regular hexagon such that \(\overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{a}}\) and \(\overrightarrow{\mathrm{BC}}=\overrightarrow{\mathrm{b}}\).

    As we know,

    \(\mathrm{AD}\) is parallel to \(\mathrm{BC}\) such that \(\mathrm{AD}=2 \mathrm{BC}\)

    \(\therefore \overrightarrow{\mathrm{AD}}=2 \overrightarrow{\mathrm{BC}}=2 \overrightarrow{\mathrm{b}}\)

    In \( \triangle \mathrm{ABC}\), we have

    \( \vec{\rightarrow} \rightarrow \vec{\rightarrow} \)

    \( \mathrm{AB}+\mathrm{BC}=\mathrm{AC} \)

    \( \Rightarrow \overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}=\overrightarrow{\mathrm{AC}} \)

    In \( \triangle \mathrm{ACD}\), we have

    \( \overrightarrow{\mathrm{AC}}+\overrightarrow{\mathrm{CD}}=\overrightarrow{\mathrm{AD}} \)

    \( \Rightarrow \overrightarrow{\mathrm{CD}}=\overrightarrow{\mathrm{AD}}-\overrightarrow{\mathrm{AC}} \)

    \( \Rightarrow \overrightarrow{\mathrm{CD}}=2 \overrightarrow{\mathrm{b}}-(\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}) \)

    \( \Rightarrow \overrightarrow{\mathrm{CD}}=\overrightarrow{\mathrm{b}}-\overrightarrow{\mathrm{a}}\)

  • Question 2
    4 / -1

    In the given circle, \(\mathrm{O}\) is the centre, \(\mathrm{AB}=\mathrm{BC}\) and \(\mathrm{OM}=5\) units. The length of \(\mathrm{ON}\) is equal to_____________

    Solution

    Given, \(AB=BC\), \(OM=5\) units

    \(OM \) and \(ON\) are perpendicular to AB and BC chords

    Since, equal chords of a circle are equidistant from the centre.

    Therefore, \(OM=ON=5\) units

  • Question 3
    4 / -1

    If nth term of a series is given by Tn = 3n + 2, where n is a natural number then find the value of\(S_{n}=\sum_{k=1}^{n} T_{k}=?\)

    Solution

    Given,

    nth term of a series is Tn = 3n + 2

    Here, we have to find the value of\(S_{n}=\sum_{k=1}^{n} T_{k}=?\)

    Sum of series\(=\mathrm{S}_{\mathrm{n}}=\sum(3 \mathrm{n}+2)=\sum 3 \mathrm{n}+\sum 2\)

    As we know that,

    \(1+2+3+4+\ldots+\mathrm{n}=\sum \mathrm{n}=\frac{\mathrm{n}(\mathrm{n}+1)}{2}\)

    \(\Rightarrow \mathrm{S}_{\mathrm{n}}=3 \sum \mathrm{n}+\sum 2\)

    \(\Rightarrow \mathrm{S}_{\mathrm{n}}=\frac{3 \mathrm{n}(\mathrm{n}+1)}{2}+2 \mathrm{n}=\frac{\mathrm{n}(3 \mathrm{n}+7)}{2}\)

  • Question 4
    4 / -1

    The order and degree of the differential equation \(\left(\frac{d^4 y}{d x^4}\right)^{\frac{1}{2}}=\left[1+\left(\frac{d^2 y}{d x^2}\right)^2\right]^{\frac{1}{3}}\) respectively are:

    Solution

    Given:

    \(\left(\frac{d^4 y}{d x^4}\right)^{\frac{1}{2}}=\left[1+\left(\frac{d^2 y}{d x^2}\right)^2\right]^{\frac{1}{3}}\)

    Highest derivative in the given differential equation is \(4\).

    So order is \(4\).

    To find the degrees, we need to change the differential equation in to form which is free from radicals.

    \(\left[\left(\frac{d^4 y}{d x^4}\right)^{\frac{1}{2}}\right]^6=\left[\left[1+\left(\frac{d^2 y}{d x^2}\right)^2\right]^{\frac{1}{3}}\right]^6\)

    \(\Rightarrow\left(\frac{d^4 y}{d x^4}\right)^3=\left[1+\left(\frac{d^2 y}{d x^2}\right)^2\right]^2\)

    Now the differential equation is free from radicals,

    Degree of highest derivative \(= 3\)

    \(\therefore\) Order and degree of the given differential equation \(=4\) and \(3\) respectively.

  • Question 5
    4 / -1

    If \(a, b, c\) are three consecutive positive integers, then \(\log (1+c a)=\)

    Solution
    \(\because a, b\) and \(c\) are consecutive positive integers and considering a as the first term. We can express other positive integers as:
    \(b=a+1\) and \(c=a+2\)
    \(\Rightarrow \log (1+c a)=\log (1+(a+2) a)\) (By substituting the value
    of \(c\) in terms of a),
    \(\Rightarrow \log (1+c a)=\log \left(1+a^{2}+2 a\right)\)
    \(\Rightarrow \log (1+c a)=\log \left[(a+1)^{2}\right]\left(\because(a+1)^{2}=a^{2}+1+2 a\right)\)
    \(\Rightarrow \log (1+c a)=2 \times \log (a+1)\left(\because \log \left(x^{2}\right)=2 \times \log (x)\right)\)
    \(\Rightarrow \log (1+c a)=2 \log b(\because b=a+1)\)
  • Question 6
    4 / -1

    An equilateral triangle is inscribed in the parabola \(y^2=4 a x\), where one vertex is at the vertex of the parabola. Find the length of the side of the triangle.

    Solution

    Let OAB be the equilateral triangle inscribed in parabola \(y^2=4 a x\)

    Let AB intersect the x-axis at point C. Let OC = k

    From the equation of the given parabola, we have \(y^2=4 a k \Rightarrow y=\) \(\pm 2 \sqrt{a k}\)

    \(\therefore\) The respective coordinates of points A and B are\((k, 2 \sqrt{a k})\), and \((k,-2 \sqrt{a k})\)

    \(A B=C A+C B=2 \sqrt{a k}+2 \sqrt{a k}=4 \sqrt{a k}\)

    Let AB intersect the x-axis at point C.

    Let OC = k

    From the equation of the given parabola, we have \(y^2=4 a k \Rightarrow y=\) \(\pm 2 \sqrt{a k}\)

    \(\therefore\) The respective coordinates of points A and B are

    \((k, 2 \sqrt{a k})\), and \((k,-2 \sqrt{a k})\)

    AB = CA + CB = \(2 \sqrt{a k}+2 \sqrt{a k}=4 \sqrt{a k}\)

    since OAB is an equilateral triangle, \(O A^2=A B^2\)

    \(\therefore k^2+(2 \sqrt{a k})^2=(4 \sqrt{a k})^2\)

    \(\Rightarrow k^2+4 a k=16 a k\)

    \(\Rightarrow k^2=12 a k\)

    \(\Rightarrow k=12 a\)

    \(\therefore A B=4 \sqrt{a k}=4 \sqrt{a \times 12 a}=4 \sqrt{12 a^2}=8 \sqrt{3} a\)

  • Question 7
    4 / -1

    Evaluate \(\int_{0}^{2} \frac{1}{\sqrt{3+2 x-x^{2}}} d x\):

    Solution

    Let\(I =\int_{0}^{2} \frac{d x}{\sqrt{3+2 x-x^{2}}}\)

    \(=\int_{0}^{2} \frac{d x}{\sqrt{-\left(x^{2}-2 x-3\right)}}\)

    \(=\int_{0}^{2} \frac{d x}{\sqrt{-\left(x^{2}-2 x+1-4\right)}}\)

    \(=\int_{0}^{2} \frac{d x}{\sqrt{4-(x-1)^{2}}}\)

    \(=\int_{0}^{2} \frac{d x}{\sqrt{2^{2}-(x-1)^{2}}}\)

    \(=\left[\sin ^{-1}\left(\frac{x-1}{2}\right)\right]_{0}^{2}\)

    \(\left[\because\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1}\left(\frac{x}{a}\right)\right]\)

    \(=\left[\sin ^{-1} \left(\frac{1}{2}\right)-\sin ^{-1}\left(-\frac{1}{2}\right)\right]\)

    \(=\left[\sin ^{-1} \left(\frac{1}{2}\right)+\sin ^{-1} \left(\frac{1}{2}\right)\right]\)

    \(\left[\because \sin ^{-1}(-x)=-\sin ^{-1} x\right]\)

    \(=\frac{\pi}{6}+\frac{\pi}{6}=\frac{\pi}{3}\)

  • Question 8
    4 / -1

    If \({ }^{n}C_{r}={ }^{n} C_{r-1}\) and \({ }^{n}P_{r}={ }^{n} P_{r+1}\) then the value of r is:

    Solution

    The formula of a combination of r objects out of n objects is given as follows:

    \({ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}=\frac{\mathrm{n} !}{\mathrm{r} !(\mathrm{n}-\mathrm{r}) !}\)

    The formula for permutation of r objects out of n objects is given as follows:

    \({ }^{n} P_{r}=\frac{\mathbf{n} !}{(n-r) !}\)

    It is given that \({ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}-1}\) therefore, using a combination formula we can write:

    \({ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}-1}\)

    ⇒ \(\frac{\mathrm{n} !}{(\mathrm{n}-\mathrm{r}) ! \mathrm{r} !}=\frac{\mathrm{n} !}{[\mathrm{n}-(\mathrm{r}-1)] !(\mathrm{r}-1) !}\)

    ⇒ \(\frac{[\mathrm{n}-(\mathrm{r}-1)] !(\mathrm{r}-1) !}{(\mathrm{n}-\mathrm{r}) ! \mathrm{r} !}=1\)

    ⇒ \(\frac{(\mathrm{n}-\mathrm{r}+1)(\mathrm{n}-\mathrm{r}) !(\mathrm{r}-1) !}{(\mathrm{r}-1)(\mathrm{n}-\mathrm{r})) !(! \mathrm{r})}=1\)

    ⇒ \(\frac{\mathrm{n}-\mathrm{r}+1}{\mathrm{r}}=1\)

    ⇒ \(\mathrm{n}=2 \mathrm{r}-1\)

    Similarly, we know that, \({ }^{\mathrm{n}} \mathrm{P}_{\mathrm{r}}={ }^{\mathrm{n}} \mathrm{P}_{\mathrm{r}+1}\) therefore, using the permutation formula:

    \({ }^{n} P_{r}=^{n}P_{r+1}\)

    ⇒ \(\frac{\mathrm{n} !}{(\mathrm{n}-\mathrm{r}) !}=\frac{\mathrm{n} !}{(\mathrm{n}-(\mathrm{r}+1)) !}\)

    ⇒ \(\frac{(n-r-1) !}{(n-r) !}=1\)

    ⇒ \(\frac{(\mathrm{n}-\mathrm{r}-1) !}{(\mathrm{n}-\mathrm{r}-1) !(\mathrm{n}-\mathrm{r})}=1\)

    ⇒ \(\mathrm{n}-\mathrm{r}=1\)

    Now substitute n = 2r - 1 in the above equation.

    \(\mathrm{n}-\mathrm{r}=1\)

    ⇒ \((2 \mathbf{r}-1)-\mathbf{r}=1\)

    ⇒ \(\mathrm{r}=2\)

    Therefore, the value of r = 2.

  • Question 9
    4 / -1

    If \(a+b+c=0,|a|=3,|b|=5,|c|=7\), then the angle between \(a\) and \(b\) is:

    Solution

    Given,

    \(\vec{a}+\vec{b}+\vec{c}=0\) and \(|\vec{a}|=3,|\vec{b}|=5,|\vec{c}|=7\)

    Let angle between \(\vec{a}\) and \(\vec{b}\) be \(\theta\).

    \(\vec{a}+\vec{b}+\vec{c}=0\)

    \(\Rightarrow \vec{a}+\vec{b}=-\vec{c}\)

    \(\Rightarrow|\vec{a}|^{2}+|\vec{b}|^{2}+2 \vec{a} \cdot \vec{b}=|\vec{c}|^{2}\)

    \(\Rightarrow 9+25+30 \cos \theta=49\)

    \(\Rightarrow \cos \theta=\frac{1}{2}\)

    \(\therefore \theta=\frac{\pi}{3}\)

  • Question 10
    4 / -1

    What is the modulus of the complex number \(i^{2 n+1}(-i)^{2 n-1}\), where \(n \in N\) and \(i=\sqrt{-1}\)?

    Solution

    Given:

    \(i ^{2 n +1}(- i )^{2 n -1}\)

    As we know,

    \(Z=a+ib\)

    From the concept used we know that \(2 n-1\) is odd

    \(\Rightarrow i ^{2 n+1}(- i )^{2 n-1}\)

    \(\Rightarrow-( i )^{2 n+1}( i )^{2 n-1}\)

    \(\Rightarrow-( i )^{2 n+1+2 n-1}\)

    \(\Rightarrow-( i )^{4 n}\)

    \(\Rightarrow-\left( i ^{4}\right)^{n}\)

    \(\Rightarrow-(1)^{n}=-1\)

    Therefore, the modulus of the complex number \(i ^{2 n +1}(- i )^{2 n -1}\) is \(1\).

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now