The formula of a combination of r objects out of n objects is given as follows:
\({ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}=\frac{\mathrm{n} !}{\mathrm{r} !(\mathrm{n}-\mathrm{r}) !}\)
The formula for permutation of r objects out of n objects is given as follows:
\({ }^{n} P_{r}=\frac{\mathbf{n} !}{(n-r) !}\)
It is given that \({ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}-1}\) therefore, using a combination formula we can write:
\({ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}-1}\)
⇒ \(\frac{\mathrm{n} !}{(\mathrm{n}-\mathrm{r}) ! \mathrm{r} !}=\frac{\mathrm{n} !}{[\mathrm{n}-(\mathrm{r}-1)] !(\mathrm{r}-1) !}\)
⇒ \(\frac{[\mathrm{n}-(\mathrm{r}-1)] !(\mathrm{r}-1) !}{(\mathrm{n}-\mathrm{r}) ! \mathrm{r} !}=1\)
⇒ \(\frac{(\mathrm{n}-\mathrm{r}+1)(\mathrm{n}-\mathrm{r}) !(\mathrm{r}-1) !}{(\mathrm{r}-1)(\mathrm{n}-\mathrm{r})) !(! \mathrm{r})}=1\)
⇒ \(\frac{\mathrm{n}-\mathrm{r}+1}{\mathrm{r}}=1\)
⇒ \(\mathrm{n}=2 \mathrm{r}-1\)
Similarly, we know that, \({ }^{\mathrm{n}} \mathrm{P}_{\mathrm{r}}={ }^{\mathrm{n}} \mathrm{P}_{\mathrm{r}+1}\) therefore, using the permutation formula:
\({ }^{n} P_{r}=^{n}P_{r+1}\)
⇒ \(\frac{\mathrm{n} !}{(\mathrm{n}-\mathrm{r}) !}=\frac{\mathrm{n} !}{(\mathrm{n}-(\mathrm{r}+1)) !}\)
⇒ \(\frac{(n-r-1) !}{(n-r) !}=1\)
⇒ \(\frac{(\mathrm{n}-\mathrm{r}-1) !}{(\mathrm{n}-\mathrm{r}-1) !(\mathrm{n}-\mathrm{r})}=1\)
⇒ \(\mathrm{n}-\mathrm{r}=1\)
Now substitute n = 2r - 1 in the above equation.
\(\mathrm{n}-\mathrm{r}=1\)
⇒ \((2 \mathbf{r}-1)-\mathbf{r}=1\)
⇒ \(\mathrm{r}=2\)
Therefore, the value of r = 2.