Self Studies

Mathematics Test-19

Result Self Studies

Mathematics Test-19
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    4 / -1

    The domain of the function \(f(x)=\sin ^{-1}\left(\frac{|x|+5}{x^{2}+1}\right)\) is \((-\infty,-a] \cup[a, \infty)\), Then \(a\) is equal to:

    Solution

  • Question 2
    4 / -1

    The differential equation of the family of curves \(y=c_1 e^x+c_2 e^{-x}\) is:

    Solution
    \(\begin{array}{l}y=c_1 e^x+c_2 e^{-x} \\ \Rightarrow \frac{d y}{d x}=\frac{d}{d x} c_1 e^x+\frac{d}{d x} c_2 e^{-x} \\ \Rightarrow \frac{d y}{d x}=c_1 e^x-c_2 e^{-x} \\ \Rightarrow \frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d}{d x}\left(c_1 e^x-c_2 e^{-x}\right) \\ \Rightarrow \frac{d^2 y}{d x^2}=c_1 e^x+c_2 e^{-x}=y \\ \Rightarrow \frac{d^2 y}{d x^2}-y=0\end{array}\)
  • Question 3
    4 / -1

    Find the coefficient of \(x^{2}\) in the expansion of \(\left(3 x+\frac{1}{x}\right)^{6}\) ?

    Solution

    As we know,

    In Binomial expansion, the independent term in

    \(\left[a x^{p}+\left(\frac{b}{x}\right)^{a}\right]^{n}\) is,

    \(T_{r+1}={ }^{n} C_{r} \cdot a^{(n-r)} \cdot b^{r} \quad \ldots(1)\)

    Given:

    \(\left(3 x+\frac{1}{x}\right)^{6}\)

    Using equation (1)

    \(\mathrm{T}_{\mathrm{r}+1}={ }^{6} \mathrm{C}_{\mathrm{r}} \cdot(3 {x})^{6-\mathrm{r}} \cdot\left(\frac{1}{{x}}\right)^{\mathrm{r}}\)

    \(={ }^{6} \mathrm{C}_{\mathrm{r}}(3)^{6-\mathrm{r}} {x}^{6-\mathrm{r}} \cdot {x}^{-\mathrm{r}}\)

    \(={ }^{6} \mathrm{C}_{\mathrm{r}}(3)^{6-\mathrm{r}} \cdot {x}^{6-2 \mathrm{r}} \quad \ldots(2)\)

    Coefficient of \(x^{2}\)

    \(6-2 \mathrm{r}=2\)

    \(\Rightarrow 2 \mathrm{r}=4\)

    \(\Rightarrow \mathrm{r}=2\)

    The value of \(\mathrm{r}\) is putting in equation \((2)\)

    \(={ }^{6} \mathrm{C}_{2}(3)^{6-2} \cdot {x}^{2}\)

    \(=\frac{6 \times 5}{2 \times 1} \cdot 3^{4}\)

    \(=15 \times 81\)

    \(=1215\)

  • Question 4
    4 / -1

    If \(\sec ^{4} \theta-\sec ^{2} \theta=3\) then the value of \(\tan ^{4} \theta+\tan ^{2} \theta\) is:

    Solution

    We know that,

    \(\Rightarrow \sec ^{2} \theta=1+\tan ^{2} \theta\)

    We have,

    \(\Rightarrow\left(\sec ^{2} \theta\right)^{2}-\sec ^{2} \theta=3 \)

    \(\Rightarrow\left(1+\tan ^{2} \theta\right)^{2}-\left(1+\tan ^{2} \theta\right)=3\)

    \(\Rightarrow\left(1+\tan ^{4} \theta+2 \tan ^{2} \theta\right)-\left(1+\tan ^{2} \theta\right)=3\)

    \(\Rightarrow 1+\tan ^{4} \theta+2 \tan ^{2} \theta-1-\tan ^{2} \theta=3 \)

    \(\Rightarrow \tan ^{4} \theta+\tan ^{2} \theta=3\)

  • Question 5
    4 / -1

    The number of rectangles that you can find on a chess board is:

    Solution

    Number of horizontal lines in chess board \(=9\)

    Number of vertical lines in chess board \(=9\)

    2 horizontal lines and 2 vertical lines will for 1 rectangle box

    Number of rectangle \(={ }^{9} C_{2} \times{ }^{9} C_{2}\)

    \(\Rightarrow 36 \times 36=1296\)

  • Question 6
    4 / -1

    What is the coefficient of the middle term in the expansion of \(\left(1+4 x+4 x^{2}\right)^{5} ?\)

    Solution

    Given:

    \(\left(1+4 x+4 x^{2}\right)^{5} \)

    As we know,

    \((a+b)^{2}=(a^{2}+b^{2}+2ab)\)

    \((1+4x+4x^{2})=\left[(1+2 x)^{2}\right]^{5}\)

    \(=(1+2 x)^{2\times5}\)

    \(=(1+2 x)^{10}\)

    For Middle term: \(r=\frac{10}{2}=5\)

    As we know,

    \({}^{n}C_{r}(p)^{n}(q)^{n-r}\)

    After putting the value,

    \(p=1, q=2x, r=5\)

    Middle Term \(={ }^{10} C_{5}(1)^{10}(2 x)^{5} \)

    As we know,\({ }^{n} C_{r}=\)\(\frac{n !}{r !(n-r) !}\)

    \(=\frac{10 !}{5 ! 5 !} \times 32 x^{5} \)

    \(= \frac{10 \times 9 \times 8 \times 7 \times 6 \times 5!}{5!\times5!}\)

    \(= \frac{10 \times 9 \times 8 \times 7 \times 6}{5\times 4 \times 3 \times 2!}\)

    \(=36\times7\times32x^{5}\)

    \(=252\times32x^{5}\)

    \(=8064 x^{5}\)

    \(\therefore\) The coefficient of the middle term in the expansion of \(\left(1+4 x+4 x^{2}\right)^{5}\) is \(8064\).

  • Question 7
    4 / -1

    Form the differential equation for the family of circle with center \((0,0)\) and radius \(r\), where \(r\) is any constant.

    Solution

    The standard equation of the circle is

    \(( x - h )^2+( y - k )^2= r ^2\)

    Where centre is \(( h , k\) ) and radius is \(r\).

    Now,

    The family of circle having centre \((0,0)\) and radius \(r\) is

    \(x^2+y^2=r^2\)

    \(\because\) There is only one constant \(r\).

    Differentiating w.r.t. \(x\)

    \(\Rightarrow 2 x+2 y \frac{d y}{d x}=0 \)

    \(\Rightarrow \frac{d y}{d x}=-\frac{x}{y}\)

  • Question 8
    4 / -1

    If \(\sin \theta \cos \theta=k\), where \(0 \leq \theta \leq \frac{\pi}{2}\), then which one of the following is correct?

    Solution

  • Question 9
    4 / -1

    Find \(X\) if\(\mathrm{X}+\mathrm{Y}=\left[\begin{array}{ll}7 & 0 \\ 2 & 5\end{array}\right]\) and \(\mathrm{X}-\mathrm{Y}=\left[\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right]\)

    Solution

    Given:

    \(X+Y=\left[\begin{array}{ll}7 & 0 \\ 2 & 5\end{array}\right]\)...........(1)

    \(X-Y=\left[\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right]\)...........(2)

    Adding equations (1) and (2), we get,

    \(2 \mathrm{X}=\left[\begin{array}{ll}7 & 0 \\ 2 & 5\end{array}\right]+\left[\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right]\)

    \(\Rightarrow 2 \mathrm{X}=\left[\begin{array}{ll}10 & 0 \\ 2 & 8\end{array}\right]\)

    \(\Rightarrow \mathrm{X}=\frac{1}{2}\left[\begin{array}{cc}10 & 0 \\ 2 & 8\end{array}\right]\)

    \(\therefore X=\left[\begin{array}{ll}5 & 0 \\ 1 & 4\end{array}\right]\)

  • Question 10
    4 / -1

    Find the area under the given curves and given lines:

    \(y=x^{2}, x=1, x=2\) and \(x\)-axis

    Solution

    Given,

    \(y=x^{2}, x=1, x=2\) and \(x\)-axis

    Area required \(=\) Area \(A B C D\)

    \(=\int_{1}^{2} y d x\)

    \(y \rightarrow\) Equation of parabola

    \(y=x^{2}\)

    Thus,

    Area required \(=\int_{1}^{2} y d x\)

    \(=\int_{1}^{2} x^{2} d x\)

    \(\left[\because\int x^{n} d x=\left(\frac{(x^{n+1})}{(n+1)}\right)\right]\)

    \(=\left[\frac{x^{3}}{3}\right]_{1}^{2}\)

    \(=\left(\frac{2^{3}}{3}-\frac{1}{3}\right)\)

    \(=\left(\frac{8}{3}-\frac{1}{3}\right)\)

    \(=\left(\frac{7}{3}\right)\)sq. units

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now