Self Studies

Mathematics Test-20

Result Self Studies

Mathematics Test-20
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    4 / -1

    If nth terms of two A.P.’s are 3n + 8 and 7n + 15, then the ratio of their 12th terms will be:

    Solution

    Given,

    \(n^{\text {th }}\) terms of two A.P's are \(3 n+8\) and \(7 n+15\).

    So, \(12^{\text {th }}\) term in \(1^{\text {st }} \mathrm{AP}\):

    an= 3 n + 8

    For n = 12,

    \(a _{12}= 3 \times 12+8\)

    \(=36+8=44\)

    Similarly, \(12^{\text {th }}\) term of \(2^{\text {nd }}\) AP:

    an = 7n + 15

    For n = 12,

    \(a_{12}=7 \times 12+15\)

    \(=84+15=99\)

    \(\therefore\) The required ratio \(=\frac{44 }{ 99}\)

    \(=\frac{4 } 9=4: 9\)

  • Question 2
    4 / -1

    Find the modulus of the complex number \(\frac{1+{i}}{1+\sqrt{3} {i}}\).

    Solution

    If \({z}=\frac{{z}_{1}}{{z}_{2}}\) so, modulus of \(|{z}|=\frac{\left|{z}_{1}\right|}{\left|{z}_{2}\right|}\)

    \(z=\frac{1+i}{1+\sqrt{3} \mathrm{i}}\)

    \(|z|=\frac{\sqrt{(1)^{2}+(1)^{2}}}{\sqrt{(1)^{2}+(\sqrt{3})^{2}}}\)

    \(=\frac{\sqrt{2}}{2}\)

    \(=\frac{1}{\sqrt{2}}\)

  • Question 3
    4 / -1

    In the given figure, \(\mathrm{X}\) is the centre of the circle, \(\mathrm{XM} \perp \mathrm{AB}, \mathrm{XM}=3\) units and \(\mathrm{MB}=3\) units. What is the length of AM?

    Solution

    Given, \(XM= 3\) units, \(MB= 3\) units and\(XM \perp AB\)

    As we know that, perpendicular line on a chord from the centre bisect it.

    Therefore, \(AM=MB= 3\) units

  • Question 4
    4 / -1

    Find \(X\), if \(Y=\left[\begin{array}{ll}3 & 2 \\ 1 & 4\end{array}\right]\) and \(2 X+Y=\left[\begin{array}{cc}1 & 0 \\ -3 & 2\end{array}\right]\).

    Solution

    Given \(Y=\left[\begin{array}{ll}3 & 2 \\ 1 & 4\end{array}\right]\)

    And \(2 \mathrm{X}+\mathrm{Y}=\left[\begin{array}{cc}1 & 0 \\ -3 & 2\end{array}\right]\)

    \(\Rightarrow 2 \mathrm{X}+\left[\begin{array}{ll}3 & 2 \\ 1 & 4\end{array}\right]=\left[\begin{array}{cc}1 & 0 \\ -3 & 2\end{array}\right]\)

    \(\Rightarrow 2 \mathrm{X}=\left[\begin{array}{cc}1 & 0 \\ -3 & 2\end{array}\right]-\left[\begin{array}{cc}3 & 2 \\ 1 & 4\end{array}\right]\)

    \(\Rightarrow 2 X=\left[\begin{array}{ll}-2 & -2 \\ -4 & -2\end{array}\right]\)

    \(\Rightarrow X=\frac{1}{2}\left[\begin{array}{ll}-2 & -2 \\ -4 & -2\end{array}\right]\)

    \(\therefore X=\left[\begin{array}{ll}-1 & -1 \\ -2 & -1\end{array}\right]\)

  • Question 5
    4 / -1

    \(\left|\begin{array}{ccc}1+i & 1-i & 1 \\ 1-i & i & 1+i \\ i & 1+i & 1-i\end{array}\right|\) is a :

    Solution

    \(1+i\left[(1-1)-(1+i)^2\right]-(1-i)\left[(1-i)^2-i(1+i)\right]+\)

    \(1\left[(1-i)(1+i)-i^2\right]\)

    \(=(1+i)\left[1-1^2-2 i\right]-(1-i)\left[1+1^2-2 i-i-1^2\right]+\left[1-1^2-1^2\right]\)

    \(=(1+i)\left[-2 i^2-2 i\right]-(1-i)(1-3 i)+\left[1-2 i^2\right]\)

    \(=(1+i)[+2-2 i]-(1-i)(1-3 i)-1\)

    \(2\left[1-1^2\right]-(1-i)(1-3 i)-1\)

    \(4-\left(1-3 i-i+3 i^2\right)-1\)

    \(3-(1-4 i-3)\)

    \(3-(-2-4 i)\)

    \(=5+4 i\)

  • Question 6
    4 / -1

    Find the angle between the pair of lines given by

    \(\vec{r}=3 \hat{i}+2 \hat{j}-4 \hat{k}+\lambda(\hat{i}+2 \hat{j}+2 \hat{k}) \) and

    \(\vec{r}=5 \hat{i}-2 \hat{j}+\mu(3 \hat{i}+2 \hat{j}+6 \hat{k})\)

    Solution

    Given,

    \(\vec{b}_1=\hat{i}+2 \hat{j}+2 \hat{k}\)

    \(\vec{b}_2=3 \hat{i}+2 \hat{j}+6 \hat{k}\)

    The angle \(\theta\) between the two lines is given by,

    \(\cos \theta=\left|\frac{\vec{b}_1 \cdot \vec{b}_2}{\left|\overrightarrow{b_1}\right|\left|\vec{b}_2\right|}\right|\)

    \(=\left|\frac{(\hat{i}+2 \hat{j}+2 \hat{k}) \cdot(3 \hat{i}+2 \hat{j}+6 \hat{k})}{\sqrt{1+4+4} \sqrt{9+4+36}}\right|\)

    \(=\left|\frac{3+4+12}{3 \times 7}\right|=\frac{19}{21} \)

    \( \theta =\cos ^{-1}\left(\frac{19}{21}\right)\)

  • Question 7
    4 / -1

    The sides \(a, b, c\) (taken in order) of a \(\triangle A B C\) are in A.P. If \(\cos \alpha=\frac{\mathrm{a}}{\mathrm{b}+\mathrm{c}}, \cos \beta=\frac{\mathrm{b}}{\mathrm{c}+\mathrm{a}}\) \(\cos \gamma=\frac{\mathrm{c}}{\mathrm{a}+\mathrm{b}}\), then \(\tan ^{2} \frac{\alpha}{2}+\tan ^{2} \frac{\gamma}{2}\) is equal to:

    Solution

    Given:

    \(\cos \alpha=\frac{\mathrm{a}}{\mathrm{b}+\mathrm{c}}\)

    Using the half-angle formula \(\cos 2 \theta=\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}\) and the fact that \(c=2 \mathrm{~b}-\mathrm{a},\) we get;

    \(\Rightarrow \frac{1-\tan ^{2} \frac{\alpha}{2}}{1+\tan ^{2} \frac{\alpha}{2}}=\frac{\mathrm{a}}{3 \mathrm{~b}-\mathrm{a}}\)

    \(\Rightarrow \frac{2 \tan ^{2} \frac{\alpha}{2}}{2}=\frac{(3 \mathrm{~b}-\mathrm{a})-\mathrm{a}}{(3 \mathrm{~b}-\mathrm{a})+\mathrm{a}}\)

    \(\Rightarrow \tan ^{2} \frac{\alpha}{2}=\frac{3 \mathrm{~b}-2 \mathrm{a}}{3 \mathrm{~b}}\)

    Similarly, \(\tan ^{2} \frac{\gamma}{2}=\frac{2 \mathrm{a}-\mathrm{b}}{3 \mathrm{~b}}\)

    Now, \(\tan ^{2} \frac{\alpha}{2}+\tan ^{2} \frac{\gamma}{2}\)

    \(=\frac{3 \mathrm{~b}-2 \mathrm{a}}{3 \mathrm{~b}}+\frac{2 \mathrm{a}-\mathrm{b}}{3 \mathrm{~b}}\)

    \(=\frac{2 \mathrm{~b}}{3 \mathrm{~b}}\)

    \(=\frac{2}{3}\)

  • Question 8
    4 / -1

    If (2 - i) (x - iy) = 3 + 4i then 5x is:

    Solution

    Given:

    (2 - i) (x - iy) = 3 + 4i

    ⇒ 2x - 2iy - ix + i2y = 3 + 4i

    ⇒ 2x - 2iy - ix - y = 3 + 4i (∵ i2 = -1)

    ⇒ (2x – y) + i(-x - 2y) = 3 + 4i

    Equating real and imaginary parts,

    2x - y = 3 ----(1)

    -x - 2y = 4 ----(2)

    Solving equation (1) and (2), we get

    x = \(\frac{2}{5}\) and y = \(\frac{−11}{5}\)

    Now, the value of 5x can be calculated as:

    5x = 5 × \(\frac{2}{5}\) = 2

  • Question 9
    4 / -1

    In a simultaneous throw of two dice, what is the probability of getting a total of \(7\)?

    Solution

    We know that,

    \(P(E)=\frac{n(E)}{n(S)}\)

    Where \(n(E)=\) Number of a favorable outcome

    \({n}({S})=\) Total number of outcome

    Now,

    We know that in a simultaneous throw of two dice,

    \(n(S)=6 \times 6=36\)

    Let \(E=\) event of getting a total of \(7\)

    \(\Rightarrow\{(1,6),(2,5),(3,4),(5,2),(6,1)\}\)

    \(P(E)=\frac{n(E)}{n(S)}\)

    \(\Rightarrow \frac6{36}=\frac1 6\)

    \(\therefore\) The probability of getting a total of \(7\) is \(\frac16\).

  • Question 10
    4 / -1

    What is the general solution of the differential equation x2 dy + y2 dx = 0 ?

    Where c is the constant of integration.

    Solution

    Given:\(x^{2} d y+y^{2} d x=0\)

    \(\Rightarrow x^{2} d y=-y^{2} d x\)

    \(\Rightarrow \frac{\mathrm{dy}}{\mathrm{y}^{2}}=-\frac{\mathrm{dx}}{\mathrm{x}^{2}}\)

    Integrating both sides, we get

    \(\int \frac{\mathrm{dy}}{\mathrm{y}^{2}}=-\int \frac{\mathrm{dx}}{\mathrm{x}^{2}}\)

    \(\frac{-1}{\mathrm{y}}=-\frac{-1}{\mathrm{x}}+\mathrm{c}\)

    \(\frac{-1}{\mathrm{y}}=\frac{1}{\mathrm{x}}+\mathrm{c}\)

    \(\frac{1}{x}+\frac{1}{y}=-c\)

    \(\mathrm{x}+\mathrm{y}=-\mathrm{cxy}\)

    Here \(c\) is differential constant, take \(-c=\frac{1}{c}\) (Because \(\frac{1}{c}\) is also a constant)

    \(\Rightarrow c(x+y)=x y\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now