General term: General term in the expansion of \((x+y)^{n}\) is given by \(\mathrm{T}_{({r}+1)}={ }^{\mathrm{n}} {C}_{{r}} \times {x}^{{n}-{r}} \times{y}^{{r}}\).
Given: Sum of the \(5^{\text {th }}\) and \(6^{\text {th }}\) terms is zero
\(\Rightarrow \mathrm{T}_{5}+\mathrm{T}_{6}=0\)
\(\Rightarrow{ }^{\mathrm{n}} \mathrm{C}_{4} \times \mathrm{a}^{\mathrm{n}-4} \times(-\mathrm{b})^{4}+{ }^{\mathrm{n}} \mathrm{C}_{5} \times \mathrm{a}^{\mathrm{n}-5} \times(-\mathrm{b})^{5}=0\)
\(\Rightarrow{ }^{\mathrm{n}} \mathrm{C}_{4} \times \mathrm{a}^{\mathrm{n}-4} \times \mathrm{b}^{4}-{ }^{\mathrm{n}} \mathrm{C}_{5} \times \mathrm{a}^{\mathrm{n}-5} \times \mathrm{b}^{5}=0\)
\(\Rightarrow{ }^{\mathrm{n}} \mathrm{C}_{4} \times \mathrm{a}^{\mathrm{n}-4} \times \mathrm{b}^{4}={ }^{\mathrm{n}} \mathrm{C}_{5} \times \mathrm{a}^{\mathrm{n}-5} \times \mathrm{b}^{5}\)
\(\Rightarrow \frac{\mathrm{n} !}{(\mathrm{n}-4) ! 4 !} \times \frac{\mathrm{a}^{\mathrm{n}-4}}{\mathrm{a}^{\mathrm{n}-5}}=\frac{\mathrm{n} !}{(\mathrm{n}-5) ! 5 !} \times \frac{\mathrm{b}^{5}}{\mathrm{~b}^{4}}\)
\(\Rightarrow \frac{\mathrm{a}}{(\mathrm{n}-4)}=\frac{\mathrm{b}}{5}\)
\(\therefore \frac{\mathrm{a}}{\mathrm{b}}=\frac{(\mathrm{n}-4)}{5}\)