Self Studies

Mathematics Test-21

Result Self Studies

Mathematics Test-21
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    4 / -1

    What is the solution of the differential equation \(\mathrm{dy}=\left(1+\mathrm{y}^2\right) \mathrm{dx}\) ?

    Solution

    \(\mathrm{dy}=\left(1+\mathrm{y}^2\right) \mathrm{dx}\)

    \(\Rightarrow \frac{d y}{1+y^2}=\mathrm{dx}\)

    Integrating both sides, we get,

    \(\Rightarrow \tan ^{-1} y=x+c\)

    \(\Rightarrow y=\tan (x+c)\)

    \(\therefore\) The solution of the differential equation \(d y=\left(1+y^2\right) d x\) is \(y=\tan (x+c)\).

  • Question 2
    4 / -1
    If \(\alpha, \beta\) are the different complex numbers with \(|\beta|=1,\) then find \(\left|\frac{\beta-\alpha}{1-\bar{\alpha} \beta}\right| ?\)
    Solution

    \(\left|\frac{\beta-\alpha}{1-\alpha \beta}\right|^{2}=\left(\frac{\beta-\alpha}{1-\bar{\alpha} \beta}\right)\left(\frac{\beta-\alpha}{1-\alpha \beta}\right)\)

    \(\Rightarrow\left|\frac{\beta-\alpha}{1-\alpha \beta}\right|^{2}=\frac{\beta \beta-\beta \alpha-\alpha \beta+\alpha \alpha}{(1-\alpha \beta)(1-\alpha \beta)}\)

    \(\Rightarrow\left|\frac{\beta-\alpha}{1-\bar{\alpha} \beta}\right|^{2}=\frac{|\beta|^{2}-\beta \alpha-\alpha \beta+|\alpha|^{2}}{1-\alpha \beta-\alpha \beta+|\alpha|^{2}|\beta|^{2}}\)

    \(\Rightarrow\left|\frac{\beta-\alpha}{1-\alpha \beta}\right|^{2}=\frac{|\alpha|^{2}-\beta \bar{\alpha}-\alpha \bar{\beta}+1}{1-\alpha \beta-\alpha \beta+|\alpha|^{2}}\), \(\quad[\because|\beta|=1]\)

    \(\Rightarrow\left|\frac{\beta-\alpha}{1-\alpha \beta}\right|=1\)

  • Question 3
    4 / -1

    If \(A=\left[\begin{array}{ll}i & 0 \\ 0 & i\end{array}\right], n \in N\), then \(A^{4 n}\) equals:

    Solution

    \(A =\left[\begin{array}{ll}i & 0 \\ 0 & i\end{array}\right]\)

    \(A^2=\left[\begin{array}{ll} i & 0 \\ 0 & i \end{array}\right]\left[\begin{array}{ll} i & 0 \\ 0 & i \end{array}\right]=\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]\)

    \(A ^4= A ^2 \times A ^2=\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\)

    \(A ^4= I\)

    \(A ^{4 n }= I ^{ n }= I =\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\)

  • Question 4
    4 / -1

    Find the integer value of \(\mathrm{k}\) for which the equation \(\mathrm{x}^{2}-5(\mathrm{k}-1) \mathrm{x}+(8 \mathrm{k}+1)=0\) has equal roots.

    Solution

    x2 – 5(k – 1)x + (8k + 1) = 0 has equal roots.

    \(b^{2}-4 a c=0\)

    \(\Rightarrow\{5(k-1)\}^{2}-4(8 k+1)=0\)

    \(\Rightarrow\{5(k-1)\}^{2}=4(8 k+1)\)

    \(\Rightarrow 25\left(k^{2}-2 k+1\right)=32 k+4\)

    \(\Rightarrow 25k^{2}-82k+21=0\)

    \(\Rightarrow(k-3)(25 k-7)=0\)

    \(\Rightarrow k=3\) is the integer value.

  • Question 5
    4 / -1

    Two dice are thrown simultaneously. The probability of getting a sum of \(9\) is:

    Solution

    As two dices are thrown simultaneously then combination of total cases(outcomes) \(=6\times6\)

    Now, Total cases in which sum of \(9\) can be obtained are:

    \((5,4),(4,5),(6,3),(3,6)\)

    Probability \(= \frac{Number\ of\ favourable\ outcomes}{Total\ number\ of\ outcomes}\)

    \(\therefore P(9)=\frac{4}{36}\)

    \(=\frac{1}{9}\)

  • Question 6
    4 / -1

    For what value of \(\alpha \in R\) the system of equation: \(x+2 y+z=3,2 x+4 y+2 z=6\) and \(\alpha x+ \alpha y+ \alpha z=3\alpha\) has infinitely many solutions.

    Solution

    By cramer’s rule:

    If \(\Delta=0\) and \(\Delta_{1}=\Delta_{2}=\Delta_{3}=0\), then the system is consistent and has infinitely many solutions.

    Given: \(x+y+z=3,2 x+2 y+2 z=6\) and \(a x+a y+a z=3 a\) As we know that,

    \(\Delta=\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|, \Delta_{1}=\left|\begin{array}{lll}d_{1} & b_{1} & c_{1} \\ d_{2} & b_{2} & c_{2} \\ d_{3} & b_{3} & c_{3}\end{array}\right|, \Delta_{2}=\left|\begin{array}{lll}a_{1} & d_{1} & c_{1} \\ a_{2} & d_{2} & c_{2} \\ a_{3} & d_{3} & c_{3}\end{array}\right|\) and \(\Delta_{3}=\left|\begin{array}{ccc}a_{1} & b_{1} & d_{1} \\ a_{2} & b_{2} & d_{2} \\ a_{3} & b_{3} & d_{3}\end{array}\right|\)

    \(\Rightarrow \Delta=\left|\begin{array}{ccc}1 & 1 & 1 \\ 2 & 4 & 1 \\ \alpha & \alpha & \alpha\end{array}\right|, \Delta_{1}=\left|\begin{array}{ccc}3 & 1 & 1 \\ 6 & 4 & 1 \\ 3 \alpha & \alpha & \alpha\end{array}\right|, \Delta_{2}=\left|\begin{array}{ccc}1 & 3 & 1 \\ 2 & 6 & 1 \\ \alpha & 3 \alpha & \alpha\end{array}\right|\) and \(\Delta_{3}=\left|\begin{array}{ccc}1 & 1 & 3 \\ 2 & 4 & 6 \\ \alpha & \alpha & 3 \alpha\end{array}\right|\)

    \(\Rightarrow \Delta=0\) and \(\Delta_{1}=\Delta_{2}=\Delta_{3}=0\)

    Thus, the given system has infinite solution for \(\alpha \in R\).

  • Question 7
    4 / -1

    If \(\frac{x \operatorname{cosec}^2 30^{\circ} \sec ^2 45^{\circ}}{8 \cos ^2 45^{\circ} \sin ^2 60^{\circ}}=\tan ^2 60^{\circ}-\tan ^2\) \(30^{\circ}\), then \(x=\)

    Solution

    \(\frac{x \operatorname{cosec}^2 30^{\circ} \sec ^2 45^{\circ}}{8 \cos ^2 45^{\circ} \sin ^2 60^{\circ}}=\tan ^2 60^{\circ}-\tan ^2 30^{\circ}\)

    \(\Rightarrow \frac{x(2)^2(\sqrt{2})^2}{8\left(\frac{1}{\sqrt{2}}\right)^2\left(\frac{\sqrt{3}}{2}\right)^2}=(\sqrt{3})^2-\left(\frac{1}{\sqrt{3}}\right)^2\)

    \(\Rightarrow \frac{x \times 4 \times 2}{8 \times \frac{1}{2} \times \frac{3}{4}}=3-\frac{1}{3} \Rightarrow \frac{8 x}{3}=\frac{8}{3}\)

    \(\Rightarrow x=\frac{8}{3} \times \frac{3}{8}=1\)

  • Question 8
    4 / -1

    The value of \((\sqrt{-6} \times \sqrt{-6})\) is:

    Solution
    Let;
    \(x=(\sqrt{-6} \times \sqrt{-6})\)
    We know that:
    \({i}=\sqrt{(-1)}\)
    \({i}^{2}=-1\)
    \(x=(\sqrt{6} \times i \times \sqrt{6} \times i)\)
    \(x=6 i^{2}\)
    \(x=-6\)
  • Question 9
    4 / -1

    Let \(\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{i}-\hat{j}+\hat{k}\) and \(\vec{c}=\hat{i}-\hat{j}-\hat{k}\) be three vectors. A vector \(\vec{v}\) in the plane of \(\vec{a}\) and \(\vec{b}\), whose projection on \(\vec{c}\) is \(\frac{1}{\sqrt{3}}\), is given by;

    Solution

    A vector \(\vec{v}\) in the plane of \(\vec{a}\) and \(\vec{b}\) is \(\vec{v}=\vec{a}+\lambda \vec{b}\) \(\Rightarrow \vec{v}=(\hat{i}+\hat{j}+\hat{k})+\lambda(\hat{i}-\hat{j}+\hat{k})\)

    Projection of \(\vec{v}\) on \(\vec{c}=\frac{1}{\sqrt{3}}\)

    \(\Rightarrow \frac{\vec{v} \cdot \vec{c}}{|\vec{c}|}=\frac{1}{\sqrt{3}}\)

    \(\Rightarrow \frac{(1+\lambda)-(1-\lambda)-(1+\lambda)}{\sqrt{3}}=\frac{1}{\sqrt{3}}\)

    \(\Rightarrow(1+\lambda)-(1-\lambda)-(1+\lambda)=1\)

    \(\lambda=2\)

    So, \(\vec{v}=3 \hat{i}-\hat{j}+3 \hat{k}\)

  • Question 10
    4 / -1

    In binomial expansion of \((a-b)^{n}, n \geq 5\), the sum of the \(5^{\text {th }}\) and \(6^{\text {th }}\) terms is zero. Then \(\frac{a}{b}\) is equal to:

    Solution

    General term: General term in the expansion of \((x+y)^{n}\) is given by \(\mathrm{T}_{({r}+1)}={ }^{\mathrm{n}} {C}_{{r}} \times {x}^{{n}-{r}} \times{y}^{{r}}\).

    Given: Sum of the \(5^{\text {th }}\) and \(6^{\text {th }}\) terms is zero

    \(\Rightarrow \mathrm{T}_{5}+\mathrm{T}_{6}=0\)

    \(\Rightarrow{ }^{\mathrm{n}} \mathrm{C}_{4} \times \mathrm{a}^{\mathrm{n}-4} \times(-\mathrm{b})^{4}+{ }^{\mathrm{n}} \mathrm{C}_{5} \times \mathrm{a}^{\mathrm{n}-5} \times(-\mathrm{b})^{5}=0\)

    \(\Rightarrow{ }^{\mathrm{n}} \mathrm{C}_{4} \times \mathrm{a}^{\mathrm{n}-4} \times \mathrm{b}^{4}-{ }^{\mathrm{n}} \mathrm{C}_{5} \times \mathrm{a}^{\mathrm{n}-5} \times \mathrm{b}^{5}=0\)

    \(\Rightarrow{ }^{\mathrm{n}} \mathrm{C}_{4} \times \mathrm{a}^{\mathrm{n}-4} \times \mathrm{b}^{4}={ }^{\mathrm{n}} \mathrm{C}_{5} \times \mathrm{a}^{\mathrm{n}-5} \times \mathrm{b}^{5}\)

    \(\Rightarrow \frac{\mathrm{n} !}{(\mathrm{n}-4) ! 4 !} \times \frac{\mathrm{a}^{\mathrm{n}-4}}{\mathrm{a}^{\mathrm{n}-5}}=\frac{\mathrm{n} !}{(\mathrm{n}-5) ! 5 !} \times \frac{\mathrm{b}^{5}}{\mathrm{~b}^{4}}\)

    \(\Rightarrow \frac{\mathrm{a}}{(\mathrm{n}-4)}=\frac{\mathrm{b}}{5}\)

    \(\therefore \frac{\mathrm{a}}{\mathrm{b}}=\frac{(\mathrm{n}-4)}{5}\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now