Self Studies

Mathematics Test-22

Result Self Studies

Mathematics Test-22
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    4 / -1

    Find the sum of the series whose nth term is \((2 n-1)^{2}\).

    Solution

    Given,

    \(a_{n}=(2 n-1)^{2}\)

    As we know that,

    \(S_{n}=\sum a_{n}\)

    \(\Rightarrow S_{n}=\sum_{k=1}^{n} a_{k}=\sum_{k=1}^{n}\left[4 k^{2}-4 k+1\right]\)

    \(\Rightarrow S_{n}=-4 \sum_{k=1}^{n} k+4 \sum_{k=1}^{n} k^{2}+\sum_{k=1}^{n} 1\)

    As we know,

    \(\sum \mathrm{n}^{2}\) = \(\frac{n(n+1)(2 n+1)}{8}\)

    \(\sum \mathrm{n}\) = \(\frac{n (n+1)}{2}\)

    \(\sum 1\) =n

    \(\Rightarrow S_{n}=\frac{n \cdot(2 n+1) \cdot(2 n-1)}{3}\)

  • Question 2
    4 / -1

    What is the value of the determinant \(\left|\begin{array}{ccc}\mathrm{i} & \mathrm{i}^{2} & \mathrm{i}^{3} \\ \mathrm{i}^{4} & \mathrm{i}^{6} & \mathrm{i}^{8} \\ \mathrm{i}^{9} & \mathrm{i}^{12} & \mathrm{i}^{15}\end{array}\right|\) where \(\mathrm{i}=\sqrt{-1} ?\)

    Solution

    Given determinant is \(\left|\begin{array}{ccc}\mathrm{i} & \mathrm{i}^{2} & \mathrm{i}^{3} \\ \mathrm{i}^{4} & \mathrm{i}^{6} & \mathrm{i}^{8} \\ \mathrm{i}^{9} & \mathrm{i}^{12} & \mathrm{i}^{15}\end{array}\right|\)

    Since, we have,

    \(\mathrm{i}=\sqrt{-1}\)

    \(\mathrm{i}^{2}=-1, \mathrm{i}^{3}=-\mathrm{i}, \mathrm{i}^{4}=1, \mathrm{i}^{6}=-1, \mathrm{i}^{8}=1, \mathrm{i}^{9}=\mathrm{i}, \mathrm{i}^{12}=1\), and \(\mathrm{i}^{15}=-\mathrm{i}\)

    \(=\left|\begin{array}{ccc}\mathrm{i} & -1 & -\mathrm{i} \\ 1 & -1 & 1 \\ \mathrm{i} & 1 & -\mathrm{i}\end{array}\right|\)

    \(=\mathrm{i}(\mathrm{i}-1)+1(-\mathrm{i}-\mathrm{i})-\mathrm{i}(1+\mathrm{i})\)

    \(=i^{2}-i-2 i-i-i^{2}\)

    \(=-4 i\)

  • Question 3
    4 / -1

    If the roots of the equation \(3 a x^{2}+2 b x+c=0\) are in the ratio \(3: 2\), then which one of the following is correct?

    Solution

    If \(\alpha ,\beta \) are the roots of quadratic equation \(a x^{2}+b x+c=0\), then

    Sum of roots \(=\alpha+\beta=\frac{-b}{a}\)

    Product of roots \(=\alpha \times \beta =\frac{c}{a}\)

    Given,

    \(3 a x^{2}+2 b x+c=0\)

    Comparing with standard quadratic equation \(a x^{2}+b x+c=0\), we get

    \(a=3 a, b=2 b\)

    Roots are in the ratio \(3: 2\).

    Let, roots are \(3 \alpha\) and \(2 \alpha\).

    Sum of roots \(=3 \alpha+2 \alpha=\frac{-2 b }{3 a}\)

    \(\Rightarrow 5 \alpha=\frac{-2 b }{ 3 a}\)

    \(\Rightarrow \alpha=\frac{-2 b }{ 15 a}\)

    \(\Rightarrow \alpha^{2}=\frac{4 b^{2}}{15 \times 15 a^{2}}\)

    Now, product of roots \(=3 \alpha \times 2 \alpha=\frac{c }{ 3 a}\)

    \(\therefore 6 \alpha^{2}=\frac{c }{ 3 a} \)

    \(\Rightarrow 6\left(\frac{4 b^{2}}{15 \times 15 a^{2}}\right)=\frac{c}{3 a} \)

    \(\Rightarrow 6 \times \frac{4 b^{2}\times 3a}{15 \times 5 a }=c \)

    \(\Rightarrow 2 \times 4 b^{2}=25 ac\)

    \(\Rightarrow 8 b ^{2}=25 ac\)

  • Question 4
    4 / -1

    Two coins are thrown at the same time. Find the probability of getting both heads.

    Solution

    Since two coins are tossed, therefore total number of cases \(= {(H,H) (H,T) (T,T) (T,H)}\)

    \( =4\)

    Probability \(= \frac{Number\ of\ favourable\ outcomes}{Total\ number\ of\ outcomes}\)

    probability of getting heads in both coins is:

    \(\therefore P(\text { head })=\frac{1}{4}\)

  • Question 5
    4 / -1

    Find the area of the region bounded by the parabola \(x^2=4 y, y=2\) and \(y=4\) and the \(y\)-axis in the first quadrant.

    Solution

    Given curve is \(x^2=4 y\) \(\Rightarrow x=2 \sqrt{y}\)

    Area of ABCD \(=\int_2^4 x d y\)

    \(=\int_2^4 2 \sqrt{y}~ d y \)

    \(=\frac{32-8 \sqrt{2}}{3} \) sq. unit 

  • Question 6
    4 / -1

    What is \(\int_{-a}^{a}\left(x^{2}+\sin x\right) d x\) equal to?

    Solution

    Given:

    \(\mathrm{I}=\int_{-a}^{a}\left(x^{2}+\sin x\right) d x\)

    \(=\int_{-a}^{a} x^{2} d x+\int_{-a}^{a} \sin x d x\)

    \(=\mathrm{I}_{1}+\mathrm{I}_{2}\)

    Now,

    \(\mathrm{I}_{1}=\int_{-{a}}^{{a}} {x}^{2} {dx}\)

    Here \(f(x)=x^{2}\)

    Replace \({x}\) by \(-{x}\), we get

    \(\Rightarrow f(-x)=(-x)^{2}=x^{2}\)

    \(\Rightarrow {f}(-{x})={f}({x})\)

    So, \({f}({x})\) is even function.

    As we know, If \({f}({x})\) even function then,

    \(\int_{-{a}}^{{a}} {f}({x}) {dx}=2 \int_{0}^{{a}} {f}({x}) {dx}\)

    Therefore, \(\mathrm{I}_{1}=2 \int_{0}^{{a}} {x}^{2} {dx}\)

    \(=2 \times\left[\frac{{x}^{3}}{3}\right]_{0}^{{a}}\)

    \(=2 \times\left[\frac{a^{3}}{3}-0\right]=\frac{2 a^{3}}{3}\)

    Now,

    \(\mathrm{I}_{2}=\int_{-{a}}^{{a}} \sin {x} {dx}\)

    Here \(f(x)=\sin x\)

    Replace \(x\) by \(-x\), we get

    \(\Rightarrow {f}(-{x})=\sin (-{x})=-\sin {x} \quad(\because \sin (-\theta)=-\sin \theta)\)

    \(\Rightarrow {f}(-{x})=-{f}({x})\)

    So, \(f(x)\) is odd function.

    As we know, If \(f(x)\) even function then \(\int_{-a}^{a} f(x) d x=0\)

    \(\mathrm{I}=\mathrm{I}_{1}+\mathrm{I}_{2}\)

    \(=\frac{2 {a}^{3}}{3}+0\)

    \(=\frac{2 {a}^{3}}{3}\)

  • Question 7
    4 / -1

    The solution of the differential equation \(\mathrm{dy}=\left(1+\mathrm{y}^{2}\right) \mathrm{dx}\) is?

    Solution

    Given that:

    \(d y=\left(1+y^{2}\right) d x\)

    \(\Rightarrow \frac{\mathrm{dy}}{1+\mathrm{y}^{2}}=\mathrm{dx}\)

    Integrating both sides, we get

    \(\Rightarrow \int \frac{\mathrm{dy}}{1+\mathrm{y}^{2}}=\int \mathrm{dx}\)

    \(\Rightarrow \tan ^{-1} \mathrm{y}=\mathrm{x}+\mathrm{c}\)

    \(\therefore y=\tan (x+c)\)

  • Question 8
    4 / -1

    The number of ways in which 5 boys and 4 girls to sit around a table so that all the boys sit together is:

    Solution

    Concept:

    Arrangements of n different objects around a circle, then the number of arrangements is (n -1)!

    Calculation:

    Given: All boys are to sit together

    So, All boys can be considered as a single group.

    \(\therefore\) Total no of students \(=4\) Girls \(+ 1\)Group \(=5\)

    The number of ways of arranging 5 students in a round table is \((5-1) !=4!\)

    Now, no of the ways of arranging 5 boys is \(5 !\)

    Therefore, The total number of ways \(=4 ! 5 !\)

  • Question 9
    4 / -1

    If cot α and cot β are the roots of the equation x2 - 5x + 4 = 0, then what is cot (α + β) equal to?

    Solution

    The given equation is, \(x^{2}-5 x+4=0\)

    We need to find out the roots of the given equation. So, for that, we can write the equation as,

    \(x^{2}-4 x-x+4=0\)

    \(\Rightarrow x(x-4)-(x-4)=0\)

    \(\Rightarrow(x-4)(x-1)=0\)

    \(\therefore \mathrm{x}=1,4\)

    \(\cot \alpha\) and \(\cot \beta\) are the roots of the equation \(x^{2}-5 x+4=0\)

    \(\cot \alpha=1\) and \(\cot \beta=4\)

    \(\cot (\alpha+\beta)=\frac{(\cot \alpha \cot \beta-1)}{(\cot \alpha+\cot \beta)}\)

    Putting the value of the roots we get,

    \(\cot (\alpha+\beta)=\frac{(1 \times 4-1)}{(1+4)}\)

    \(\therefore \cot (\alpha+\beta)=\frac{3}{5}\)

  • Question 10
    4 / -1

    In the given figure, \(O\) is the centre of the circle, \(\angle A O B=\angle P O Q=30^{\circ}\) and \(\angle X O Y=\angle\) \(Z O W=40^{\circ}\). Also, \(X Y=4\) units and \(A B=3.5\) units. The value of \((A B+Z W+P Q+X Y)\) is:

    Solution

    Given, \(\angle A O B=\angle P O Q=30^{\circ}\)

    \(\angle X O Y=\angle Z O W=40^{\circ}\)

    \(XY=4\) units and \(AB= 3.5\) units

    As we know that, opposite side of equal angles of two different traingles are always same. Therefore, \(AB=PQ= 3.5\) and \(XY=ZW=4\)

    \(\therefore AB+ ZW+ PQ+ XY= 3.5+4+3.5+4 \)

    \(\Rightarrow 15\) units

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now