Self Studies

Mathematics Test-23

Result Self Studies

Mathematics Test-23
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    4 / -1

    Out of \(7\) consonants and \(4\) vowels, how many words can be formed such that it contains \(3\) consonants and \(2\) vowels?

    Solution

    Given,

    There are \(7\) consonants and \(4\) vowels

    Here, we have to find how many words can be formed such that it has \(3\) consonants and \(2\) vowels.

    No. of ways to select \(2\) vowels out of \(4\) vowels \(={ }^{4} C_{2}\)

    No. of ways to select \(3\) consonants out of \(7\) consonants \(={ }^{7} C_{3}\)

    \(\therefore\) No. of words that can be formed which contains \(3\) consonants and \(2\) vowels \(={ }^{4} C_{2} \times{ }^{7} C_{3}\)

    As we know that,

    \({ }^{n} C_{r}=\frac{n !}{r ! \times(n-r) !}\)

    \(\Rightarrow{ }^{4} C_{2} \times{ }^{7} C_{3}=6 \times 35=210\)

    The no. of ways to arrange words containing \(3\) consonants and \(2\) vowels \(=210 \times 5 !=25200\).

  • Question 2
    4 / -1

    If two sides of a triangle are represented by \(x^2-7 x y+6 y^2=\) 0 and the centroid is \((1,0)\), then the equation of third side is

    Solution

    Given two lines are \(x-6 y=0\) and \(x-y=0\).

    We know \(\frac{0+x_1+x_2}{3}=1\)

    \(\Rightarrow x_1+x_2=3 \).....(i)

    and \( y_1+y_2=0\).........(ii)

    Also, \(x_1-6 y_1=0 \).............(iii)

    \(x_2-y_2=0\)......(iv)

    [Since the points \(\left(x_1, y_1\right)\) and \(\left(x_2, y_2\right)\) lie on the lines \(A B\) and \(A C\) respectively]

    Now on solving, the co-ordinates of \(B\) and \(C\) are \(\left(\frac{18}{5}, \frac{3}{5}\right)\) and \(\left(\frac{-3}{5}, \frac{-3}{5}\right)\) respectively.

    Hence, the equation of third side i.e., \(B C\) is \(2 x-7 y-3=0\).

  • Question 3
    4 / -1

    Integrate the function: \((4 x+2) \sqrt{x^{2}+x+1}\)

    Solution

    Let \(x^{2}+x+1=t\)

    Differentiating both sides with respect to \(x\).

    \(2 x+1+0 =\frac{d t}{d x}\)

    \(2 x+1 =\frac{d t}{d x}\)

    \(d x =\frac{d t}{2 x+1}\)

    Integrating the function,

    \(\int(4 x+2) \sqrt{x^{2}+x+1} \cdot d x\)

    \(=\int 2(2 x+1) \sqrt{x^{2}+x+1} \cdot d x\)

    Putting \(x^{2}+x+1=t \) and \(d x=\frac{d t}{2 x+1}\)

    \(=\int 2(2 x+1) \sqrt{t} \cdot \frac{d t}{2 x+1}\)

    \(=\int 2 \sqrt{t} \cdot d t\)

    \(=2 \int \sqrt{t} \cdot d t\)

    \(=2 \int t^{\frac{1}{2}} \cdot d t\)

    \(=2 \cdot \frac{t^{\frac{1}{2}+1}}{\frac{1}{2}+1}+C\)

    \([\)\(\because\) \(\int x^{n} \cdot d x=\frac{x^{n+1}}{n+1}+C\)\(]\)

    \(=2 \cdot \frac{t^{\frac{3}{2}}}{\frac{3}{2}}+C\)

    \(=\frac{2 \cdot 2}{3} \cdot t^{\frac{3}{2}}+C\)

    \(=\frac{4}{3} \cdot t^{\frac{3}{2}}+C\)

    \(=\frac{4}{3} \cdot\left(x^{2}+x+1\right)^{\frac{3}{2}}+C\)

    \([\)\(\because\) \(x^{2}+x+1=t\)\(]\)

  • Question 4
    4 / -1

    Let \(z\) and \(w\) be two non-zero complex numbers such that \(|{z}|=|{w}|\) and \(\arg ({z})+\arg ({w})=\pi,\) then \({z}\) equals:

    Solution
    \({z}=|{z}|(\cos \theta+{i} \sin \theta)\)
    where \(\theta=\operatorname{arg|z|}\)
    if \(\theta_{1}={\arg|w|}\) then \(\theta=\pi-\theta_{1}\)
    \(\therefore {z}=|{w}|\left\{\cos \left(\pi-\theta_{1}\right)+{i} \sin \left(\pi-\theta_{1}\right)\right\}\)
    \(=|{w}|\left(-\cos \theta_{1}+{i} \sin \theta_{1}\right)\)
    \(=-|{w}|\left(-\cos \theta_{1}+{i} \sin \theta_{1}\right)\)
    \(=-|{w}|\left(\cos \theta_{1}-{i} \sin \theta_{1}\right)\)
    \({z}=-|\overline{{w}}|\)
  • Question 5
    4 / -1

    The term independent of \({x}\) in \(\left({x}^{2}-\frac{1}{{x}^{3}}\right)^{10}\) is:

    Solution

    We have \((x+y)^{n}={ }^{n} C_{0} x^{n}+{ }^{n} C_{1} x^{n-1} . y+{ }^{n} C_{2} x^{n-2}. y^{2}+\ldots+{ }^{n} C_{n} y^{n}\)

    General term: General term in the expansion of \((x+y)^{n}\) is given by:

    \(\mathrm{T}_{(\mathrm{r}+1)}={ }^{n} C_{\mathrm{r}} \times x^{\mathrm{n}-\mathrm{r}} \times y^{\mathrm{r}}\)

    We have to find term independent of \(x\) in \(\left(x^{2}-\frac{1}{x^{3}}\right)^{10}\).

    We know that,

    \(\mathrm{T}_{(\mathrm{r}+1)}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \times {x}^{\mathrm{n}-\mathrm{r}} \times \mathrm{y}^{\mathrm{r}}\)

    \(\Rightarrow \mathrm{T}_{(\mathrm{r}+1)}={ }^{10} \mathrm{C}_{\mathrm{r}} \times\left({x}^{2}\right)^{10-\mathrm{r}} \times\left(\frac{-1}{{x}^{3}}\right)^{\mathrm{r}}\)

    \(=(-1)^{\mathrm{r}} \times{ }^{10} \mathrm{C}_{\mathrm{r}} \times({x})^{20-2 \mathrm{r}} \times\left({x}^{3}\right)^{-\mathrm{r}}\)

    \(=(-1)^{\mathrm{r}} \times{ }^{10} \mathrm{C}_{\mathrm{r}} \times({x})^{20-2 \mathrm{r}} \times({x})^{-3 \mathrm{r}}\)

    \(=(-1)^{\mathrm{r}} \times{ }^{10} \mathrm{C}_{\mathrm{r}} \times({x})^{20-5 \mathrm{r}}\)

    For the term independent of \(x\), power of \(x\) should be zero

    Therefore, \(20-5 r=0\)

    \(\Rightarrow \mathrm{r}=4\)

    \(\mathrm{T}_{(4+1)}=(-1)^{4} \times{ }^{10} \mathrm{C}_{4}={ }^{10} \mathrm{C}_{4}\)

  • Question 6
    4 / -1

    Let \(P , Q , R\) and \(S\) be the points on the plane with position vectors \(-2 i-\) \(\hat{j}, 4 \hat{i}, 3 \hat{i}+3 \hat{j}\) and \(-3 \hat{i}+2 \hat{j}\) respectively. The quadrilateral \(P Q R S\) must be a:

    Solution

    As we given

    \((-2 \hat{i}-\hat{j}),(4 \hat{i}),(3 \hat{i}+3 \hat{j}),(-3 \hat{i}+2 \hat{j})\)

    On converting the above vectors into Cartesian coordinates Then, consider,

    \(P (-2,-1), Q (4,0), R (3,3), S (-3,2)\)

    By distance formula

    \(=\sqrt{\left( x _1- x _2\right)^2+\left( y _1+ y _2\right)^2}\)

    \(d ( P Q)=\sqrt{(4+2)^2+(0+1)^2}=\sqrt{37}\)

    Similarly,

    \(d ( QR )=\sqrt{10}\)

    \(d ( RS )=\sqrt{37}\)

    \(d ( SP )=\sqrt{10}\)

    Therefore,

    \(d ( PQ )= d ( RS )\) and \(d ( QR )= d ( SP )\)

    Hence,

    \(PQRS\) is parallelogram

    Now,

    Slope \(=\frac{y_2-y_1}{x_2-x_1}\)

    Therefore, let slope is \(S\) then,

    \(S ( PQ )=\frac{0-(-1)}{4-(-2)}=\frac{0+1}{4+2}=\frac{1}{6}\)

    Similarly,

    \(S ( QR )=\frac{3}{-1}=-3\)

    \(S ( RS )=\frac{-1}{-6}=\frac{1}{6}\)

    \(S ( PS )=-3\)

    \(S ( P Q )= S ( RS )\) this implies \(PQ \| RS\)

    And

    \(S ( QR )= S ( SP )\) this implies \(QR \| SP\)

    \(S(P Q) = S(Q R)\) i.e. they aren't parallel

    \(S ( PQ ) \times S ( QR ) =-1\) i.e. they aren't perpendicular.

    Therefore

    \(P Q R S\) is a parallelogram but it is nor a rhombus and not a rectangle.

  • Question 7
    4 / -1

    In a survey of 600 students in a school, 150 students were found to be taking teaand 225 taking coffee, 100 were taking both tea and coffee. Find how manystudents were taking neither tea nor coffee?

    Solution

    Let U be the set of all students who took part in the survey.

    Let T be the set of students taking tea.

    Let C be the set of students taking coffee.

    Given that:

    Number of students \(=\mathrm{n}(\mathrm{U})=600\)

    Number of students taking tea \(=\mathrm{n}(\mathrm{T})=150\)

    Number of students taking coffee \(=\mathrm{n}(\mathrm{C})=225\)

    Number of students taking both tea and coffee \(=\mathrm{n}(\mathrm{T} \cap \mathrm{C})=100\)

    To find: Number of student taking neither tea nor coffee i.e., we have to find \(\mathrm{n}\left(\mathrm{T}^{\prime} \cap \mathrm{C}^{\prime}\right) .\)

    \(\mathrm{n}\left(\mathrm{T}^{\prime} \cap \mathrm{C}^{\prime}\right)=\mathrm{n}(\mathrm{T} \cup \mathrm{C})^{\prime}\)

    \(\mathrm{n}\left(\mathrm{T}^{\prime} \cap \mathrm{C}^{\prime}\right)=\mathrm{n}(\mathrm{U})-\mathrm{n}(\mathrm{T} \cup \mathrm{C})\)

    \(=\mathrm{n}(\mathrm{U})-[\mathrm{n}(\mathrm{T})+\mathrm{n}(\mathrm{C})-\mathrm{n}(\mathrm{T} \cap \mathrm{C})]\)

    \(=600-[150+225-100]\)

    \(=600-275\)

    \(=325\)

  • Question 8
    4 / -1

    If \(U=\left[\begin{array}{lll}2 & -3 & 4\end{array}\right], X=\left[\begin{array}{lll}0 & 2 & 3\end{array}\right], V=\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right], Y=\left[\begin{array}{l}2 \\ 2 \\ 4\end{array}\right]\), then find out the value of \(U V+X Y\).

    Solution

    Given,

    \(U=\left[\begin{array}{lll}2 & -3 & 4\end{array}\right], X=\left[\begin{array}{lll}0 & 2 & 3\end{array}\right], V=\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right], Y=\left[\begin{array}{l}2 \\ 2 \\ 4\end{array}\right]\)

    Then,

    \(U V+X Y=\left[\begin{array}{lll}2 & -3 & 4\end{array}\right]\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right]+\left[\begin{array}{lll}0 & 2 & 3\end{array}\right]\left[\begin{array}{l}2 \\ 2 \\ 4\end{array}\right]\)

    \(U V+X Y=\left[\begin{array}{ll}6-6+4\end{array}\right]+[0+4+12]\)

    \(=[4]+[16]\)

    \(=[20]\)

  • Question 9
    4 / -1

    A ratio of the \(5^{\text {th }}\) term from the beginning to the \(5^{\text {th }}\) term from the end in the binomial expansion of \(\left(2^{\frac{1}{3}}+\frac{1}{2(3)^{\frac{1}{3}}}\right)^{10}\) is:

    Solution

    Given: \(\left(2^{\frac{1}{3}}+\frac{1}{2(3)^{\frac{1}{3}}}\right)^{10}\)

    Here, \({n}=10, {a}=2^{\frac{1}{3}}\) and \({b}=\frac{1}{2(3)^{\frac{1}{3}}}\)

    As we know that, in the binomial expansion of \(({a}+{b})^{{n}}\), the \({r}^{\text {th }}\) term the end is \(({n}-{r}+2)^{\text {th }}\) term from the beginning.

    \(\Rightarrow 5^{\text {th }}\) from the end in the binomial expansion of \(\left(2^{\frac{1}{3}}+\frac{1}{2(3)^{\frac{1}{3}}}\right)^{10}\) is \((10-5+2=7)^{\text {th }}\) term from the beginning.

    \(\Rightarrow\) We need to find \(T_{5}: T_{7} .\)

    As we know that, the general term in the binomial expansion of \((a+b)^{n}\) is given by: \(T_{r+1}={ }^{n} C_{r} \times a^{n-r} \times b^{r}\)

    \(\Rightarrow \frac{T_{5}}{T_{7}}=\frac{{ }^{10} C_{4} \times\left(2^{\frac{1}{3}}\right)^{6} \times\left(\frac{1}{2(3)^{\frac{1}{3}}}\right)^{4}}{{ }^{10} C_{6} \times\left(2^{\frac{1}{3}}\right)^{4} \times\left(\frac{1}{2(3)^{\frac{1}{3}}}\right)^{6}}\)

    As we know that, \({ }^{n} C_{r}={ }^{n} C_{n-r}\)

    \(\Rightarrow{ }^{10} C_{6}={ }^{10} C_{4}\)

    \(\Rightarrow \frac{T_{5}}{T_{7}}=\frac{2^{\frac{6}{3}} \times\left(2(3)^{\frac{1}{3}}\right)^{6}}{2^{\frac{4}{3}} \times\left(2(3)^{\frac{1}{3}}\right)^{4}}=4 \times(36)^{\frac{1}{3}}\)

  • Question 10
    4 / -1

    What is the distance of the point \((2,3,4)\) from the plane \(3 x-6 y+2 z+11=0\) ?

    Solution

    Perpendicular distance of a point from a plane:

    Let us consider a plane given by a cartesian equation,

    \(A x+B y+C z=d\), and a point whose coordinates are \(\left(\mathrm{x}_1, \mathrm{y}_1, \mathrm{z}_1\right)\).

    So,

    Distance \(=\left|\frac{A x_1+B y_1+C z_1-d}{\sqrt{A^2+B^2+C^2}}\right|\)

    We have to find the distance of point \((2,3,4)\) from the plane \(3 x-6 y+2 z+11=0\)

    \(\Rightarrow\) Distance \(=\left|\frac{3 \times 2+(-6) \times 3+2 \times 4+11}{\sqrt{3^2+(-6)^2+2^2}}\right|\)

    \(\Rightarrow\) Distance \(=\left|\frac{6-18+8+11}{\sqrt{9+36+4}}\right|\)

    \(\Rightarrow\) Distance \(=\left|\frac{7}{\sqrt{49}}\right|\)

    \(\Rightarrow\) Distance \(=1\)

    So, The distance of the point \((2,3,4)\) from the plane \(3 x-6 y+2 z+11=0\) is 1 unit.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now