Self Studies

Mathematics Test-26

Result Self Studies

Mathematics Test-26
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    4 / -1

    The area bounded by the parabola \(y=x^{2}\) and the line \(y=2 x\) (in square units) is:

    Solution

    Let the line \(y=2 x\) cuts the parabola \(y=x^{2}\) at then coordinates of \(O\) and \(A\) are \((0,0)\) and \((2,4)\) respectively.

    Then 

    Area bounded \(=\) area of triangle \(\triangle OAB -\) Area of the region \(ODABO\)

    \(=\frac{1}{2} \times OB \times AB -\int_{0}^{2} y~dx\)

    \(=\frac{1}{2} \times 2 \times 4-\int_{0}^{2} x ^{2} dx\)

    \(\left[\because\int x^{n} d x=\left(\frac{(x^{n+1})}{(n+1)}\right)\right]\)

    \(=4-\left[\frac{ x ^{3}}{2}\right]_{0}^{2}\)

    \(=4-\frac{8}{3}=\frac{12-8}{3}\)

    \(=\frac{4}{3}\) Sq. units.

  • Question 2
    4 / -1

    Find the sum of the sequence -8, -5, -2, …, 7.

    Solution

    Given sequence,

    -8, -5, -2, …, 7

    Here,

    a = -8

    d = 3

    n = 6

    The sum of the sequence for n terms,

    \(S_{n}=\frac{n}{2} \times[2 \times a+(n-1) \times d]\)

    Substituting the values of a, n and d,

    \(\Rightarrow S_{6}=\frac{6}{2} \times[2 \times(-8)+(6-1) \times 3]\)

    \(\Rightarrow S_{6}=-3\)

  • Question 3
    4 / -1

    The number of solutions of the equation \(x^{3}+2 x^{2}+5 x+2 \cos x=0\) in \([0,2 \pi]\) are:

    Solution

    \(f(x)=x^{3}+2 x^{2}+5 x+2 \cos x\)

    \(f^{\prime}(x)=3 x^{2}+4 x+5-2 \cdot \sin x\)

    \(=3\left(x+\frac{2}{5}\right)^{2}+\frac{11}{3}-2 \cdot \sin x\)

    \(\Rightarrow f^{\prime}(X)>0, \forall x\)

    \(f(x)\) is increasing for all \(x \in R\)

    Also, \(f(0)=2 \Rightarrow f(x)=0\)

    So, \(f(x)\) has no solution.

  • Question 4
    4 / -1

    If \(x+2 y=\left[\begin{array}{cc}2 & -3 \\ 1 & 5\end{array}\right]\) and \(2 x+5 y=\left[\begin{array}{ll}7 & 5 \\ 2 & 3\end{array}\right]\), then \(y\) is equal to:

    Solution
    Given,
    \(\begin{aligned}
    &x+2 y=\left[\begin{array}{cc}
    2 & -3 \\
    1 & 5
    \end{array}\right] \end{aligned}\)...(1)
    \(\begin{aligned} &2 x+5 y=\left[\begin{array}{ll}
    7 & 5 \\
    2 & 3
    \end{array}\right]
    \end{aligned}\)...(2)
    Multiplying by 2 in the equation (1), we get
    \( 2 x+4 y=\left[\begin{array}{cc}
    4 & -6 \\
    2 & 10
    \end{array}\right]\)...(3)
    Subtracting equation (3) from equation (2), we get
    \((2 x+5 y)-(2 x+4 y)=\left[\begin{array}{ll}
    7 & 5 \\
    2 & 3
    \end{array}\right]-\left[\begin{array}{cc}
    4 & -6 \\
    2 & 10
    \end{array}\right]\)
    We know that,
    \(\left[\begin{array}{cc}A_1 & A_2 \\ B_1 & B_2\end{array}\right]-\left[\begin{array}{cc}C_1 & C_2 \\ D_1 & D_2\end{array}\right]=\left[\begin{array}{cc}A_1-C_1 & A_2-C_2 \\ B_1-D_1 & B_2-D_2\end{array}\right]\)
    \(\therefore y=\left[\begin{array}{cc}
    3 & 11 \\
    0 & -7
    \end{array}\right]\)
  • Question 5
    4 / -1

    Find the distance between the planes \(2 x+y-2 z+6=0\) and \(4 x+2 y-4 z-6=\) \(0\) .

    Solution

    Given,

    \(2 x+y-2 z+6=0\) and \(4 x+2 y-4 z-6=0\) are two planes.

    Here, we can rewrite the equation of plane \(2 x+y-2 z+6=0\) as \(4 x+2 y-4 z+12=0\) by multiplying both the sides of \(2 x+y-2 z+6=0\) with \(2\).

    As we can see that, the plane \(4 x+2 y-4 z+12=0\) and \(4 x+2 y-4 z-6=0\) are parallel planes.

    As we know that, the distance between two parallel planes \(a x+b y+c z+d_1=0\) and ax \(+\) by \(+\mathrm{cz}+\mathrm{d}_2=0\) is given by: \(D=\left|\frac{d_1-d_2}{\sqrt{a^2+b^2+c^2}}\right|\)

    Here, \(a=4, b=2, c=-4, d_1=12\) and \(d_2=-6\).

    \(\Rightarrow D=\left|\frac{d_1-d_2}{\sqrt{a^2+b^2+c^2}}\right|\)

    \(\Rightarrow D=\left|\frac{12-(-6)}{\sqrt{4^2+2^2+(-4)^2}}\right|\)

    \(\Rightarrow D=\left|\frac{18}{\sqrt{16+4+16}}\right|\)

    \(\Rightarrow D=\left|\frac{18}{6}\right|=3\)

  • Question 6
    4 / -1

    If \(\left|\begin{array}{ccc}a & b & 0 \\ 0 & a & b \\ b & 0 & a\end{array}\right|=0\)

    then which one of the following is correct?

    Solution

    Solving a \(3 \times 3\) determinant:

    A \(3 \times 3\) determinant can be solved as follows:

    \(\left|\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right|=a(e i-f h)-b(d i-f g)+c(d h-g e)\)

    Given

    Simplify the given determinant as follows:

    \(\left|\begin{array}{lll}a & b & 0 \\ 0 & a & b \\ b & 0 & a\end{array}\right|=0\)

    \(a\left(a^2-0\right)-b\left(0-b^2\right)+0(0-a b)=0\)

    \(\begin{aligned} a^3+b^3 &=0 \\ a^3 &=-b^3 \\ \frac{a^3}{b^3} &=-1 \end{aligned}\)

    Therefore, the given condition holds only if \(\frac{a}{b}\) is one of the cube roots of \(-1\)

  • Question 7
    4 / -1
    What is \(\mathrm{i}^{1000}+\mathrm{i}^{1001}+\mathrm{i}^{1002}+\mathrm{i}^{1003}\) equal to (where \(\mathrm{i}=\sqrt{-1}\))?
    Solution
    Given,
    \(\mathrm{i}^{1000}+\mathrm{i}^{1001}+\mathrm{i}^{1002}+\mathrm{i}^{1003}\)
    \(\mathrm{i}^{2}=-1\)
    \(\Rightarrow \mathrm{i}^{1000}=\left(\mathrm{i}^{2}\right)^{500}=(-1)^{500}=1\)
    \(\Rightarrow \mathrm{i}^{1001}=\mathrm{i}^{1000} \times \mathrm{i}=\mathrm{i}\)
    \(\Rightarrow \mathrm{i}^{1002}=\mathrm{i}^{1000} \times \mathrm{i}^{2}=-1\)
    \(\Rightarrow \mathrm{i}^{1003}=\mathrm{i}^{1002} \times \mathrm{i}=-\mathrm{i}\)
    So adding them all \(-1+1+\mathrm{i}-\mathrm{i}=0\)
  • Question 8
    4 / -1

    The number of terms in the expansion of \(\left(1+3 x+3 x^{2}+x^{3}\right)^{6}\) is:

    Solution

    Given:

    \(\left(1+3 x+3 x^{2}+x^{3}\right)^{6}\)

    \(=\left[(1+\mathrm{x})^{3}\right]^{6} \)

    \(=[1+\mathrm{x}]^{6(3)} \)

    \(=(1+\mathrm{x})^{18}\)

    So, total number of terms will be \(18+1=19\) terms.

  • Question 9
    4 / -1

    \(A B\) and \(C D\) are the diameters of a circle which intersects at \(P\). Join \(A C, C B, B D\) and \(D A\). If \(\angle P A D=60^{\circ}\), then what is \(\angle B P D\) equal to?

    Solution

    Given,

    \(\angle P A D=60^{\circ}\)

    In \(\triangle A P D, \mathrm{AP}=\mathrm{DP}\) (Radii of circle)

    In a triangle angles opposite to equal sides are equal.

    \(\angle \mathrm{PAD}=\angle \mathrm{PDA}=60^{\circ}\)

    \(\angle \mathrm{PAD}+\angle \mathrm{PDA}+\angle \mathrm{APD}=180^{\circ}\) (Angle sum property of \(\triangle\))

    \(60^{\circ}+60^{\circ}+\angle \mathrm{APD}=180^{\circ}\)

    \(\angle \mathrm{APD}=60^{\circ}\)

    \(\angle \mathrm{APD}+\angle \mathrm{BPD}=180^{\circ}\) (Linear pair)

    \(\angle \mathrm{BPD}=120^{\circ}\)

  • Question 10
    4 / -1

    Find the equation of directrix of the parabola \(y^{2}+8 y-12 x+4=0 \).

    Solution
    As we know,
    General equation of Parabola \(( y - k )^{2}=4 a ( x - h )\) and directrix of parabola \(y ^{2}=4 ax\) is \(x =- a\).
    Given,
    The equation of parabola is \(y ^{2}+8 y -12 x +4=0\).
    \(\Rightarrow y^{2}+8 y+16-16-12 x+4=0 \)
    \(\Rightarrow(y+4)^{2}-16-12 x+4=0 \)
    \(\Rightarrow(y+4)^{2}=12 x+16-4 \)
    \(\Rightarrow(y+4)^{2}=12 x+12 \)
    \(\Rightarrow(y+4)^{2}=12(x+1)\)
    Let, 
    \( y+4=Y\)
    \(x+1=X \)...(i)
    \(\therefore Y^{2}=12 X\)
    Comparing it with \(Y^{2}=4 aX\) we get
    \( a =3\)...(ii)
    As we know that directrix of parabola \(Y^{2}=4 aX\) is given by,
    \(X=-a\)
    \(\Rightarrow X=-3\)
    From equation (i), we get
    \(x+1=-3 \)
    \(\Rightarrow x+4=0\)
    So, equation of directrix is \(x+4=0\).
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now