Self Studies

Mathematics Test-27

Result Self Studies

Mathematics Test-27
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    4 / -1

    If \(A =\left[\begin{array}{rr}0 & - i \\ i & 0\end{array}\right]\) and \(B =\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]\) are matrices, then \(AB + BA\) is:

    Solution
    Given,
    \(A =\left[\begin{array}{rr}0 & - i \\ i & 0\end{array}\right]\)
    \(B =\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]\)
    \(\therefore AB =\left[\begin{array}{rr}
    0 & - i \\
    i & 0
    \end{array}\right] \times\left[\begin{array}{rr}
    1 & 0 \\
    0 & -1
    \end{array}\right]\)
    We know that,
    \(X=\left[\begin{array}{cc}A_1 & A_2 \\ B_1 & B_2\end{array}\right], Y=\left[\begin{array}{cc}C_1 & C_2 \\ D_1 & D_2\end{array}\right]\).
    \(XY=\left[\begin{array}{cc}A_1C_1+A_2D_1 & A_1C_2+A_2D_2 \\ B_1C_1+B_2D_1 & B_1C_2+B_2D_2 \end{array}\right]\)
    \(=\left[\begin{array}{ll}
    0+0 & 0+ i \\
    i +0 & 0+0
    \end{array}\right]\)
    \(=\left[\begin{array}{ll}
    0 & i \\
    i & 0
    \end{array}\right]\)
    And \(BA =\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right] \times\left[\begin{array}{rr}0 & - i \\ i & 0\end{array}\right]\)
    \(=\left[\begin{array}{rr}0+0 & - i +0 \\ 0- i & 0+0\end{array}\right]\)
    \(=\left[\begin{array}{rr}0 & - i \\ - i & 0\end{array}\right]\)
    \(\therefore A B+B A=\left[\begin{array}{ll}
    0 & i \\
    i & 0
    \end{array}\right]+\left[\begin{array}{rr}
    0 & -i \\
    -i & 0
    \end{array}\right]\)
    \(=\left[\begin{array}{cc}
    0+0 & i-i \\
    i-i & 0+0
    \end{array}\right]\)
    \(=\left[\begin{array}{ll}
    0 & 0 \\
    0 & 0
    \end{array}\right]\)
    So, \(AB+BA\) is a null matrix.
  • Question 2
    4 / -1

    How many 5-digit prime numbers can be formed using the digits 1, 2, 3, 4, 5 if the repetition of digits is not allowed?

    Solution

    Prime number: Prime number are those which are divisible by itself and 1.

    Not a single five-digit prime number can be formed using the digits 1, 2, 3, 4, 5(without repetition).

    This is because if one adds the digits, the result obtained will be = 1 + 2 + 3 + 4 + 5 = 15 which is divisible by 3.

    So, any number obtained as a permutation of these 5 digits will be at least divisible by 3 and cannot be a prime number.

  • Question 3
    4 / -1

    If the slope of one of the lines represented by \(a x^{2}+2 h x y+b y^{2}=0\) (be the square of the other, then):

    Solution

    Here, \(m_{1}=m_{2}^{2} \Rightarrow m_{2}^{2}+m_{2}=\frac{-2 h}{b}\quad \ldots\) (i)

    And,

    \(m_{2}^{2} m_{2}=\frac{a}{b} \Rightarrow m_{2}=\left(\frac{a}{b}\right)^{\frac{1}{3}}\ldots\) (ii)

    Putting this value of m2 in equation (i), we get

    \(\left\{\left(\frac{a}{b}\right)^{\frac{1}{3}}\right\}^{2}+\left(\frac{a}{b}\right)^{\frac{1}{3}}=\frac{-2 h}{b}\)

    On cubing both sides, we get,

    \(\left(\frac{a}{b}\right)^{2}+\frac{a}{b}+3\left(\frac{a}{b}\right)^{\frac{2}{3}} \cdot\left(\frac{a}{b}\right)^{\frac{1}{3}} \cdot\left\{\left(\frac{a}{b}\right)^{\frac{2}{3}}+\left(\frac{a}{b}\right)^{\frac{1}{3}}\right\}=\frac{-8 h^{3}}{b^{3}}\)

    \(\left(\frac{a}{b}\right)^{2}+\frac{a}{b}-\frac{6 a h}{b^{2}}=\frac{-8 h^{3}}{b^{3}}\)

    \(\left\{\because\left(\frac{a}{b}\right)^{\frac{2}{3}}+\left(\frac{a}{b}\right)^{\frac{1}{3}}=\frac{-2 h}{b}\right\} \mid\)

    \(a b(a+b)-6 a b h+8 h^{3}=0\).

  • Question 4
    4 / -1

    A dice was thrown \(500\) times frequencies for the outcomes \(1,2,3,4,5\), and \(6\) are given in the table.

    Outcome

    1

    2

    3

    4

    5

    6

    Frequency

    78

    80

    93

    79

    91

    79

    What is the probability of getting ‘\(4\)’ as outcome?

    Solution

    We can see from the table that we get '\(4\)' \(79\) times out of \(500\) trials.

    Therefore, probability of getting 4 as outcome \(=\frac{\text { Event of occurence of getting } 4 }{\text { Total number of trials }}\)

    \(=\frac{79}{500}\)

    \(=0.158\).

  • Question 5
    4 / -1

    Solution

  • Question 6
    4 / -1

    If \({ }^{n} P_{r}=3024\) and \({ }^{n} C_{r}=126\) then find \(n\) and \(r\).

    Solution

    \(\frac{{ }^{n} P_{r}}{{ }^{n} C_{r}}=\frac{3024}{126}\)

    \({ }^{n} P_{r}=\frac{n !}{(n-r) !}\)

    \({ }^{n} C_{r}=\frac{n !}{(n-r) ! \times r !} \)

    \(\text { So, [ } \left.\frac{n !}{(n-r) !}\right] \div\left[\frac{n !}{(n-r) ! \times r !}\right]=24 \)

    \(24=r ! \)

    \(\text { So, } r=4 \)

    \(\text { Now, }{ }^{n} P_{4}=3024\)

    \(\frac{n !}{(n-4) !}=3024 \)

    \(n(n-1)(n-2)(n-3)=9\times8 \times 7 \times6\)

    \(n=9\)

  • Question 7
    4 / -1

    The total number of terms in the expansion of \((x+a)^{47}-(x-a)^{47}\) after simplification is:

    Solution

    Given:

    \((x+a)^{47}-(x-a)^{47}\)

    When we expand the above equation using binomial expansion

    \((\mathrm{x}+\mathrm{y})^{\mathrm{n}}=\left(\sum_{\mathrm{k}=0}^{\mathrm{n}}{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{k}} \mathrm{x}^{\mathrm{k}} \mathrm{y}^{\mathrm{n}-\mathrm{k}}\right)\)

    So the above equation becomes

    \((\mathrm{x}+\mathrm{a})^{47}=\left(\sum_{\mathrm{k}=0}^{47}{ }^{47} \mathrm{C}_{\mathrm{k}} \mathrm{x}^{\mathrm{k}} \mathrm{a}^{47-\mathrm{k}}\right) \)

    \((\mathrm{x}-\mathrm{a})^{47}=\left(\sum_{\mathrm{k}=0}^{47}{ }^{47} \mathrm{C}_{\mathrm{k}} \mathrm{x}^{\mathrm{k}}(-\mathrm{a})^{47-\mathrm{k}}\right)\)

    \((x+a)^{47} \rightarrow\) There are 48 terms in the expansion and all are positive.

    \((x-a)^{47} \rightarrow\) There are 48 terms in the expansion.

    The terms with odd powers of a will be cancelled and those with even powers of a will add up.

    24 terms will be positive and 24 negative in the expansion of \((x-a)^{47}\)

    48 terms positive- [ 24 terms negative and 24 terms positive]

    \(=48\) terms positive \(+24\) terms negative \(+24\) terms positive \(=24\) terms

  • Question 8
    4 / -1

    Find the equation of a circle touching both the x-axis and y-axis and has centre at (-2, -2).

    Solution


  • Question 9
    4 / -1
    The minimum value of the expression 2x2+ 5x + 5 is:
    Solution

    Given equation is \(\left(2 x^{2}+5 x+5\right)\).

    For any quadratic equation of form \(\left(a x^{2}+b x+c\right)\)

    So, \(a=2>0\)

    Also, \(b=5\) and \(c=5\)

    If \(a>0\), then the minimum value of equation \(=c-\frac{b ^{2}}{4 a}\)

    Minimum value of equation \(=5-\left(\frac{25}{8}\right)=\frac{15}{8}\)

  • Question 10
    4 / -1

    Two coins were tossed \(200\) times and the following results were obtained.

    Two heads: \(55\)

    One head and one tail: \(105\)

    Two tails: \(40\)

    What is the probability of event of obtaining minimum one head?

    Solution

    Number of events of obtaining minimum one head \(=55+105\) \(=160\)

    Now, \(P(E)=\) probability of event of obtaining minimum on head\(=\frac{\text { Number of events of obtaining minimum one head }}{\text { Number of total trials }}\)

    \(=\frac{160}{200}\)

    \(=0.8\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now