Self Studies

Mathematics Test-29

Result Self Studies

Mathematics Test-29
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    4 / -1

    The improper integral \(\int_{0}^{\infty} \mathrm{e}^{-2 \mathrm{t}}\) dt converges to:

    Solution

  • Question 2
    4 / -1
    The vectors from origin to the points \(A\) and \(B\) are \(\vec{a}=2 \hat{i}-3 \hat{j}+2 \hat{k}\) and \(\vec{b}=2 \hat{i}+3 \hat{j}+\hat{k}\), respectively, then the area of the triangle \(O A B\) is:
    Solution

    As we know,

    Area of \(\triangle \mathrm{OAB}=\frac{1}{2}|\overrightarrow{\mathrm{OA}} \times \overrightarrow{\mathrm{OB}}|\)

    \(=\frac{1}{2}|(2 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}+2 \hat{\mathrm{k}}) \times(2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+\hat{\mathrm{k}})|\)

    \(=\frac{1}{2}\left|\begin{array}{ccc}\hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\ 2 & -3 & 2 \\ 2 & 3 & 1\end{array}\right|\)

    \(=\frac{1}{2}|[\hat{\mathrm{i}}(-3-6)-\hat{\mathrm{j}}(2-4)+\hat{\mathrm{k}}(6+6)]|\)

    \(=\frac{1}{2}|-9 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}+12 \hat{\mathrm{k}}|\)

    \(\therefore\) Area of \(\triangle \mathrm{OAB}=\frac{1}{2} \sqrt{81+4+144}\)

    \(=\frac{1}{2} \sqrt{229}\)

  • Question 3
    4 / -1

    If \(\left(1+x-2 x^{2}\right)^{6}=1+a_{1} x+a_{2} x^{2}+\ldots \ldots+a_{12} x^{12}\), then the expression \(a_{2}+\) \(a_{4}+a_{6}+\ldots \ldots+a_{12}\) has the value:

    Solution

    Given:

    \(\left(1+x-2 x^{2}\right)^{6}=1+a_{1} x+a_{2} x^{2}+\ldots \ldots+a_{12} x^{12}\)

    Put \(\mathrm{x}=1\) in the given equation

    \(0=1+\mathrm{a}_{1}+\mathrm{a}_{2}+\mathrm{a}_{3}+\ldots .+\mathrm{a}_{12}\).....(1)

    Put \(\mathrm{x}=-1\) in the given equation

    \((-2)^{6}=1-\mathrm{a}_{1}+\mathrm{a}_{2}-\mathrm{a}_{3}+\ldots+\mathrm{a}_{12}\).....(2)

    Adding (1) and (2), we get

    \(0+(-2)^{6}=\left(1+\mathrm{a}_{1}+\mathrm{a}_{2}+\ldots+\mathrm{a}_{12}\right)+\left(1-\mathrm{a}_{1}+\mathrm{a}_{2}-\mathrm{a}_{3} \ldots \ldots+\mathrm{a}_{12}\right) \)

    \(\Rightarrow 64=2\left(1+\mathrm{a}_{2}+\mathrm{a}_{4}+\ldots .+\mathrm{a}_{12}\right) \)

    \(\Rightarrow 1+\mathrm{a}_{2}+\mathrm{a}_{4}+\ldots \ldots+\mathrm{a}_{12}=32 \)

    \(\Rightarrow \mathrm{a}_{2}+\mathrm{a}_{4}+\ldots \ldots+\mathrm{a}_{12}=31\)

  • Question 4
    4 / -1

    There are \(6\) persons arranged in a row. Another person has to shake hands with \(3\) of them so that he should not shake hands with two consecutive persons. In how many distinct possible combinations can the handshakes take place?

    Solution

    Starting from left to right, the person will be omitted standing next to the person shaking hand.

    As the person shake hands with \(3\) so starting from left and shaking hands with first person we will omit the next one. Shaking hands with third person, the fourth person will be omitted.

    So we have \(4\) persons left after omitting \(2\) and to find distinct possible combinations we will any \(3\) among them for handshakes.

    Number of distinct possible handshakes \(=(\frac{4}{3})\)

    \(=\frac{4 !}{3 ! \times 1 !}=4\)

  • Question 5
    4 / -1

    In the figure, \(P Q L\) and \(PRM\) are tangents to the circle with centre \(O\) at the points \(Q\) and \(R\), respectively and \(S\) is a point on the circle such that \(\angle SQL =50^{\circ}\) and \(\angle SRM =\) \(60^{\circ}\). Then \(\angle Q S R\) is equal to:

    Solution

    Step \(1\): Write the given angles referring to given diagram.

    Given \(\angle SRM =60^{\circ}, \angle SQ =50^{\circ}\).

    Step \(2\): Use the geometric rules and property to find the value of \(\angle Q S R\).

    \(\text { If, } \angle SRM =60^{\circ}\)

    \(\Rightarrow \angle SRM +\angle SRO =90^{\circ}\)

    \(\therefore \angle SRO =30^{\circ}\)

    For \(\triangle OSR\)

    \(OS = OR [\) radii of same circle \(]\)

    \(\angle OSR =\angle SRO =30^{\circ}\) [angles opposite to equal sides are equal]

    As, \(\angle SQL =50^{\circ}\)

    \(\Rightarrow \angle SQL +\angle SQO=90^{\circ}\)

    \(\therefore \angle SQO =40^{\circ}\)

    For \(\triangle OSQ\),

    \(O S=O Q[\) radii of same circle \(]\)

    \(\angle SQO =\angle OSQ =40^{\circ}\) [angles opposite to equal sides are equal]

    \(\therefore \angle QSR =\angle OSR +\angle OSQ\)

    \(=30^{\circ}+40^{\circ}\)

    \(=70^{\circ}\)

    The value of \(\angle Q S R\) is \(70^{\circ}\).

  • Question 6
    4 / -1

    The solution of the differential equation \(\frac{d y}{d x}=\sec \left(\frac{y}{x}\right)+\frac{y}{x}\) is:

    Solution

    \(\frac{d y}{d x}=\sec \left(\frac{y}{x}\right)+\frac{y}{x}\)

    Let \(\frac{ y }{ x }= t\)

    \(\Rightarrow y = xt\)

    Differentiating with respect to \(x\), we get

    \(\Rightarrow \frac{ dy }{ dx }= x \frac{ dt }{ dx }+ t\)

    Now,

    \( x \frac{ dt }{ dx }+ t =\sec t + t\)

    \( \Rightarrow x \frac{ dt }{ dx }=\sec t \)

    \( \Rightarrow \frac{ dt }{\sec t }=\frac{ dx }{ x }\)

    Integrating both sides, we get

    \( \Rightarrow \int \frac{d t}{\sec t}=\int \frac{d x}{x} \)

    \(\Rightarrow \int \cos t d t=\int \frac{d x}{x} \)

    \(\Rightarrow \sin t=\log x+\log c \)

    \( \Rightarrow \sin t=\log (c x) \quad(\because \log m+\log n=\log (m n))\)

    \(\therefore \sin \left(\frac{y}{x}\right)=\log (c x)\)

  • Question 7
    4 / -1

    If \(f(x)=2 x-x^{2},\) then what is the value of \(f(x+2)+f(x-2)\) when \(x=0\)?

    Solution

    Given: \(f(x)=2 x-x^{2}\)

    Now,

    \(f(x+2)=2(x+2)-(x+2)^{2}\)

    \(f(x-2)=2(x-2)-(x-2)^{2}\)

    Adding above equations,

    \(f(x+2)+f(x-2)=2(x+2)-(x+2)^{2}+2(x-2)-(x-2)^{2}\)

    Put \(x=0\)

    \(f(2)+f(-2)=2(0+2)-(0+2)^{2}+2(0-2)-(0-2)^{2}\)

    \(=4-4-4-4\)

    \(=-8\)

  • Question 8
    4 / -1

    If \(\mathrm{A}+\mathrm{B}=90^{\circ}\), then \(\frac{\tan \mathrm{A} \tan \mathrm{B}+\tan \mathrm{A} \cot \mathrm{B}}{\sin \mathrm{A} \sec \mathrm{B}}-\frac{\sin ^2 \mathrm{~B}}{\cos ^2 \mathrm{~A}}\) is equal to:

    Solution

    \(\mathrm{A}+\mathrm{B}=90^{\circ}\)

    \(\mathrm{A}=90^{\circ}-\mathrm{B}\)

    \(\frac{\tan \mathrm{A} \tan \mathrm{B}+\tan \mathrm{A} \cot \mathrm{B}}{\sin \mathrm{A} \sec \mathrm{B}}-\frac{\sin ^2 \mathrm{~B}}{\cos ^2 \mathrm{~A}}\)

    \(=\frac{\tan \left(90^{\circ}-\mathrm{B}\right) \tan \mathrm{B}+\tan \left(90^{\circ}-\mathrm{B}\right) \cot \mathrm{B}}{\sin \left(90^{\circ}-\mathrm{B}\right) \sec \mathrm{B}}-\frac{\sin^2B}{\cos^{2}(90^{\circ}-B)}\)

    \(=\frac{\cot \mathrm{B} \tan \mathrm{B}+\cot \mathrm{B} \cot \mathrm{B}}{\cos \mathrm{B} \sec \mathrm{B}}-\frac{\sin ^2 \mathrm{~B}}{\sin ^2 \mathrm{~B}}\)

    \(=\frac{1+\cot ^2\mathrm{B}}{1}-1=1+\cot ^2 \mathrm{B}-1\)\(=\cot^{2} \mathrm{B}\)

  • Question 9
    4 / -1

    If the determinant \(\left|\begin{array}{ccc}a & b & a \alpha+b \\ b & c & b \alpha+c \\ a \alpha+b & b \alpha+c & 0\end{array}\right|\)is equal to zero, then consider thefollowing statements

    I. a, b, c are in A.P.

    II. α is a root of the equation ax2 + 2bx + c = 0.

    Which of the above statements is/are correct?

    Solution

    Three non-zero terms a, b, c are in GP if and only if b2 = ac

    For a quadratic equation ax2 + bx + c = 0,

    If α is a root then aα2 + bα + c = 0

    Given: \(\Delta=\left|\begin{array}{ccc}a & b & a \alpha+b \\ b & c & b \alpha+c \\ a \alpha+b & b \alpha+c & 0\end{array}\right|=0\)

    \(C_3 \rightarrow C_3-C_1 a-C_2\)

    \(\Rightarrow \Delta=\left|\begin{array}{ccc}a & b & 0 \\ b & c & 0 \\ a \alpha+b & b \alpha+c & -\left(a \alpha^2+b \alpha+b \alpha+c\right)\end{array}\right|=0\)

    \(\Rightarrow\left(a a^2+2 b a+c\right)\left(a c-b^2\right)=0 \)

    \(\Rightarrow a c-b^2=0 \text { or } a a^2+2 b a+c=0\)

    \(a, b, c\) are in GP and \((x-\alpha)\) is the factor \(a x^2+2 b x+c\)

  • Question 10
    4 / -1
    If \(|\vec{a}|=4\) and \(-3 \leq \lambda \leq 2\), then \(|\lambda \vec{a}|\) lies in:
    Solution

    The maximum value of \(\lambda\) is \(2\).

    So, \(|\lambda \vec{a}|=|\lambda| \cdot|\vec{a}|\)

    \(\Rightarrow|\lambda \vec{a}|=2.4=8\)

    The minimum value of \(\lambda\) is \(-3\).

    So, \(|\lambda \vec{a}|=|\lambda| \cdot|\vec{a}|\)

    \(\Rightarrow|\lambda \vec{a}|=|-3| \cdot 4 \)

    \(\Rightarrow|\lambda \vec{a}|=3.4=12\)

    So, there are no value of \(\lambda\) which is negative.

    For, \(\lambda=0\), we get,

    \(|\lambda \vec{ a }|=|\lambda| \cdot|\vec{ a }| \)

    \(\Rightarrow|\lambda \vec{ a }|=0.4=0\)

    Therefore, the smallest value of \(|\lambda \vec{a}|\) is \(0\).

    Therefore, \(|\lambda \vec{a}|\) lies in \([0,12]\).

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now