Self Studies

Mathematics Test-3

Result Self Studies

Mathematics Test-3
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    4 / -1

    \(100\) cards are numbered from \(1\) to \(100\). Find the probability of getting a prime number.

    Solution

    Total prime numbers from \(1\) to \(100\) are:

    \(2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97\)

    That means \(25\) out of \(100\)

    Probability \(= \frac{Number\ of\ favourable\ outcomes}{Total\ number\ of\ outcomes}\)

    So probability is:

    \(P(\text {prime})=\frac{25}{100}\)

    \(\Rightarrow {P}(\text {prime})=\frac{1}{4}\)

  • Question 2
    4 / -1

    If \(5 \theta\) and \(4 \theta\) are acute angles satisfying sin \(5 \theta=\cos 4 \theta\), then \(2 \sin 3 \theta-\sqrt{3} \tan 3 \theta\) is equal to:

    Solution

    \(\sin 5 \theta=\cos 4 \theta\)

    \(\Rightarrow \cos \left(90^{\circ}-5 \theta\right)=\cos 4 \theta\)

    Comparing we get,

    \(90^{\circ}-5 \theta=4 \theta\)

    \(\Rightarrow 90^{\circ}=4 \theta+5 \theta=9 \theta\)

    \(\therefore \quad \theta=\frac{90^{\circ}}{9}=10^{\circ}\)

    \(\text { Now } 2 \sin 3 \theta-\sqrt{3} \tan 3 \theta\)

    \(=2 \sin \left(3 \times 10^{\circ}\right)-\sqrt{3} \tan \left(3 \times 10^{\circ}\right)\)

    \(=2 \sin 30^{\circ}-\sqrt{3} \tan 30^{\circ}\)

    \(=2 \times \frac{1}{2}-\sqrt{3} \times \frac{1}{\sqrt{3}} \quad\left\{\begin{array}{l}\because \sin 30^{\circ}=\frac{1}{2} \\ \tan 30^{\circ}=\frac{1}{\sqrt{3}}\end{array}\right\}\)

    \(=1-1=0\)

  • Question 3
    4 / -1

    Find the value of \(I=\int_{1}^{2} \frac{\log x}{x^{2}}\):

    Solution

    Given:

    \(I=\int_{1}^{2} \frac{\log x}{x^{2}}\)

    \(I=\int_{1}^{2}\left(\log x \times \frac{1}{x^{2}}\right) d x\)

    Integration by parts:

    \(\int f(x) g(x) d x=f(x) \int g(x) d x-\int\left[f^{\prime}(x) \int g(x) d x\right] d x\)

    Where \(f\) is first function and \(g\) is second function.

    \(I=\log x \int_{1}^{2}\frac{1}{x^{2}} d x-\int_{1}^{2}\left\{\frac{d}{d x}(\log x) \cdot \int_{1}^{2}\frac{1}{x^{2}} d x\right\} d x\)

    \(=\log x\left(-\frac{1}{x}\right)-\int\left(\frac{1}{x}\right) \cdot\left(-\frac{1}{x}\right) d x\)

    \(=\log x\left(-\frac{1}{x}\right)+\int \frac{1}{x^{2}} d x\)

    \(=-\frac{\log x}{x}-\frac{1}{x}\)

    \(=-\left(\frac{\log x+1}{x}\right)\)

    Putting limits:

    \(I=\left[-\left(\frac{\log x+1}{x}\right)\right]_{1}^{2}\)

    \(I=\left[-\left(\frac{\log 2+1}{2}\right)\right]-\left[-\left(\frac{\log 1+1}{1}\right)\right]\)

    \(I=\left(\frac{1-\log 2}{2}\right)\)

    \(=\left(\frac{\log e-\log 2}{2}\right)\)

    \(I=\frac{1}{2} \log \frac{e}{2}\)

  • Question 4
    4 / -1

    The point of intersection of diagonals of a square ABCD is at the origin and one of its vertices is at A(4, 2). What is the equation of the diagonal BD?

    Solution

    Concept:

    The equation of a line passing through the point \(\left(x_{1}, y_{1}\right)\) and having the slope ' \(m\) ' is given as:

    \(y-y_{1}=m \cdot\left(x-x_{1}\right)\)

    Given: The point of intersection of diagonals of a square ABCD is at the origin and one of its vertices is at A(4, 2).

    So, the diagonal AC passes through the origin,

    As we know that, the slope of the line joining the points \(\left(x_{1}, y_{1}\right)\) and \(\left(x_{2}, y_{2}\right)\) is: \(m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\)

    The slope of line \(A C\) is given by

    \(\frac{2-0}{4-0}=\frac{1}{2}\)

    In square \(ABCD\), the diagonals \(AC\) and \(BD\) are perpendicular to each other.

    \(\Rightarrow \text { Slope of } A C \times \text { slope of } B D=-1\)

    So, the slope of BD is - 2 .

    As we know that, the equation of a line passing through the point \(\left(x_{1}, y_{1}\right)\) and having the slope ' \(m\) ' is given as:

    \(y-y_{1}=m \cdot\left(x-x_{1}\right)\)

    The equation of \(B D\) whose slope is - 2 and passes through origin is given by:

    \(y-0=(-2) \cdot(x-0)\)

    \(\Rightarrow 2 x+y=0\)

  • Question 5
    4 / -1
    \({a}, {b}, {c}\) and \({u}, {v}, {w}\) are the vertices of two triangles such that \(c=(1-r) a+r b\) and \(\omega=(1-r) v+r u\) where \(r\) is a complex number, then the two triangles:
    Solution
    Given:
    \(a, b, c\) and \(u, v, w\) are the vertices of two triangles
    such that \(c=(1-r) a+r b\) and \(w=(1-r) u+r v\)
    Consider,
    \(=\left|\begin{array}{lll}a & u & 1 \\ b & v & 1 \\ c & w & 1\end{array}\right|\)
    Applying \(R_{3} \rightarrow R_{3}-\left[(1-r) R_{1}-r R_{2}\right]\), we get

    \(=\left|\begin{array}{lll}a & u & 1 \\ b & v & 1 \\ c & w & 1\end{array}\right|\)
    \(=0\)
    Therefore, two triangles are similar.
     
  • Question 6
    4 / -1

    If \(a_{1}, a_{2}, a_{3},=t_{9}, a_{9}\) are in GP, then what is the value of the following determinant?

    \(\left|\begin{array}{lll}\ln a_{1} & \ln a_{2} & \ln a_{3} \\ \ln a_{4} & \ln a_{5} & \ln a_{6} \\ \ln a_{7} & \ln a_{8} & \ln a_{9}\end{array}\right|\)

    Solution

    Let \({r}\) be the common ratio of the given GP

    Now,

    \(\left|\begin{array}{lll}\ln a_{1} & \ln a_{2} & \ln a_{3} \\ \ln a_{4} & \ln a_{5} & \ln a_{6} \\ \ln a_{7} & \ln a_{8} & \ln a_{9}\end{array}\right|\)

    Apply, \(\mathrm{C}_{2} \rightarrow \mathrm{C}_{2}-\mathrm{C}_{1}\) and \(\mathrm{C}_{3} \rightarrow \mathrm{C}_{3}-\mathrm{C}_{1}\)

    \(\begin{aligned}&=\left|\begin{array}{lll}\ln a_{1} & \ln a_{2}-\ln a_{1} & \ln a_{3}-\ln a_{2} \\ \ln a_{4} & \ln a_{5}-\ln a_{4} & \ln a_{6}-\ln a_{5} \\ \ln a_{7} & \ln a_{8}-\ln a_{7} & \ln a_{9}-\ln a_{8}\end{array}\right| \\&=\left|\begin{array}{lll}\ln a_{1} & \ln r & \ln r \\ \ln a_{4} & \ln r & \ln r \\ \ln a_{7} & \ln r & \ln r\end{array}\right| \quad\left[\text { Since, } \frac{a_{p+1}}{a_{p}}=r \text { and } \log a_{p+1}-\log a_{p}=\log \frac{a_{p+1}}{a_{p}}=\log \right]\end{aligned}\)

    \(=0\qquad \qquad{\left[\text { Since, } \text{C}_{3}=\text{C}_{2}\right]}\)

  • Question 7
    4 / -1

    Find the coefficients of the term independent of \(x\) in the expansion of \(\left(\frac{x^{3 / 2}-1}{x+1+x^{1 / 2}}-\frac{x^{3 / 2}+1}{x+1-x^{1 / 2}}\right)^{5}\).

    Solution

    Given:\(\frac{x^{3 / 2}-1}{x+1+x^{12}}-\frac{x^{32}+1}{x+1-x^{12}}\)

    \(=\frac{\left(x^{12}\right)^{3}-1}{\left(x^{12}\right)^{2}+x^{12}+1}-\frac{\left(x^{1 / 2}\right)^{3}+1}{\left(x^{12}\right)^{2}-x^{12}+1} \)

    \(=\frac{\left(x^{12}-1\right)\left\{\left(x^{12}\right)^{2}+x^{1 / 2}+1\right\}}{\left(x^{12}\right)^{2}+x^{12}+1}-\frac{\left(x^{1 / 2}+1\right)\left\{\left(x^{12}\right)^{2}-x^{12}+1\right\}}{\left(x^{12}\right)^{2}-x^{12}+1} \)

    \(=\left(x^{12}-1\right)-\left(x^{12}+1\right) \)\(=-2\)

    So, \(\left(\frac{x^{3 / 2}-1}{x+1+x^{1 / 2}}-\frac{x^{3 / 2}+1}{x+1-x^{1 / 2}}\right)^{5}=(-2)^{5}\)\(=-32\)

    So, the expansion has only one term which is \(-32\) and independent of \(x\).

  • Question 8
    4 / -1

    Find the angle between the lines \( \vec{r}=3 i+2 j-4 k+\lambda(i+2 j+2 k) \) and \(\vec{r}=(5 j-2 k)+\mu(3 i+2 j+6 k)\).

    Solution

    Given,

    \( \vec{r}=3 i+2 j-4 k+\lambda(i+2 j+2 k) \)

    \( \vec{r}=(5 j-2 k)+\mu(3 i+2 j+6 k) \)

    We know that, angle between \(r=a_1+\lambda b_1\) and \(r=a_2+\lambda b_2\) is given by,

    \(\cos \theta=\frac{\overrightarrow{b_1} \cdot \overrightarrow{b_2}}{\left|\overrightarrow{b_1}\right|\left|\overrightarrow{b_1}\right|}\)

    \(\overrightarrow{b_1}=1+2 j+2 k\) and \(\overrightarrow{b_2}=3 i+2 j+6 k\) respectively.

    \(=\frac{(i+2 j+2 k)(3 i+2 j+6 k)}{|i+2 j+2 k||3 i+2 j+6 k|}\)

    \(=\frac{3+4+12}{\sqrt{1+4+4} \sqrt{9+4+36}}\)

    \(=\frac{19}{21}\)

    \(\Rightarrow \theta=\cos ^{-1}\left(\frac{19}{21}\right)\)

  • Question 9
    4 / -1

    Find the smallest positive integer value of \(\mathrm{k}\) for which quadratic equation \(\sqrt{3} \mathrm{x}^{2}-\sqrt{2} \mathrm{kx}+2 \sqrt{3}=0\), will have distinct real roots ?

    Solution

    Given:

    Quadratic equation \(\sqrt{3} \mathrm{x}^{2}-\sqrt{2} \mathrm{kx}+2 \sqrt{3}=0\), has distinct real roots.

    As we know that, if a quadratic equation \(a x^{2}+b x+c=0\) has distinct real roots then \(\Delta\) \(>0\) where \(\Delta=b^{2}-4 a c\).

    Here, \(a=\sqrt{3}, b=-\sqrt{2} k\) and \(c=2 \sqrt{3}\)

    \(\Rightarrow(-\sqrt{2} \mathrm{k})^{2}-4 \times \sqrt{3} \times 2 \sqrt{3}>0\)

    \(\Rightarrow 2 \mathrm{k}^{2}-24>0 \)

    \(\Rightarrow \mathrm{k}^{2}>12\)

    \(\because \mathrm{k}\) is smallest positive integer. so \(\mathrm{k}=4\)

  • Question 10
    4 / -1

    If \(\mathrm{f}(\mathrm{x})=\frac{\sin \mathrm{x}}{\mathrm{x}},\) where \(\mathrm{x} \in \mathrm{R},\) is to be continuous at \(\mathrm{x}=0,\) then the value of the function at \(x=0\).

    Solution

    Given:

    \(f(x)=\frac{\sin x}{x}\)

    Function is continuous at \(x=0\)

    Therefore, \(\mathrm{f}(0)=\lim _{\mathrm{x} \rightarrow 0} \mathrm{f}(\mathrm{x})\)

    (Form \(=\lim _{\mathrm{x} \rightarrow 0} \frac{\sin \mathrm{x}}{\mathrm{x}}\)

    Apply L-Hospital Rule,

    \(=\lim _{x \rightarrow 0} \frac{\cos x}{1}\)

    \(=\frac{\cos 0}{1}=1\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now