Self Studies

Mathematics Test-30

Result Self Studies

Mathematics Test-30
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    4 / -1

    The value of the integral \(\int_{0}^{1.5}\left[x^{2}\right] d x\), where \([x]\) denotes the greatest integer:

    Solution

  • Question 2
    4 / -1

    Find the sum of series:

    0.5+ 0.55 + 0.555+...

    Solution

  • Question 3
    4 / -1
    If \(f(x)=\frac{x}{x-1},\) then what is \(\frac{f(a)}{f(a+1)}\) equal to?
    Solution
    Given:
    \(f(x)=\frac{x}{x-1}\)
    \(\Rightarrow {f}({a})=\frac{{a}}{{a}-1}\)
    \(\Rightarrow {f}({a}+1)=\frac{({a}+1}{({a}+1)-1}\)
    \(\Rightarrow {f}({a}+1)=\frac{{a}+1}{{a}}\)
    Now,
    \(\frac{{f}({a})}{{f}({a}+1)}=\frac{\left(\frac{{a}}{{a}-1}\right)}{\left(\frac{{a}+1}{{~s}}\right)}\)
    \(=\frac{{a}^{2}}{{a}^{2}-1}\)
    \(={f}\left({a}^{2}\right)\)
  • Question 4
    4 / -1

    If \(A=\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right]\), then \(A^5=?\)

    Solution

    We have given that,

    \(A=\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right]\)

    \(\Rightarrow A=2\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\)

    \(\Rightarrow A=2 I\)

    \(\Rightarrow A^5=2^5 I^5\)

    \(\Rightarrow A^5=2^5 I\)

    \(\Rightarrow A^5=2^4 \times 2 I\)

    \(\Rightarrow A^5=2^4 \times 2\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\)

    \(\Rightarrow A^5=16\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right]\)

    \(\Rightarrow A^5=16 A\)

  • Question 5
    4 / -1

    The angle between the lines \(\frac{x-2}{2}=\frac{y-1}{7}=\frac{z+3}{-3}\) and \(\frac{x+2}{-1}=\frac{y-4}{2}=\) \(\frac{z-5}{4}\) is:

    Solution

    Two given line are,

    \(\frac{x-2}{2}=\frac{y-1}{7}=\frac{z+3}{-3} \quad\dots\)(i)

    \(\frac{x+2}{-1}=\frac{y-4}{2}=\frac{z-5}{4} \quad\ldots\)(ii)

    Direction ratio of this two line \((2,7,-3)\) and \((-1,2,4)\) respectively.

    we find the direction cosine \(\left(l_1, m_1, n_1\right)\) and \(\left(l_2, m_2, n_2\right)\),

    \(l_1=\frac{2}{\sqrt{62}}, m_1=\frac{7}{\sqrt{62}}, n_1=\frac{-3}{\sqrt{62}}\)

    And, \(l_2=\frac{-1}{\sqrt{21}}, m_2=\frac{2}{\sqrt{21}}, n_2=\frac{4}{\sqrt{21}}\)

    If angle between the line (i) and (ii) is\(\theta\), then we know,

    \(\cos \theta =l_1 l_2+m_1 m_2+n_1 n_2 \)

    \(=\frac{-2}{\sqrt{62 \times 21}}+\frac{14}{\sqrt{62 \times 21}}-\frac{12}{\sqrt{62 \times 21}} \)

    \(=\frac{14-14}{\sqrt{62 \times 21}}\)

    \(=0=\cos \frac{\pi}{2}\)

    So, \( \theta=\frac{\pi}{2}\)

  • Question 6
    4 / -1

    \(2 x-3 y=0\) and \(2 x+\alpha y=0\)

    For what value of \(\alpha\) the system has infinitely many solution.

    Solution

    The system of equations \(A X=0\) is said to be homogenous system of equations, then If \(|A| \neq 0\), then its solution \(X=0\), is called trivial solution.

    If \(|A|=0\). Then \(A X=0\) has a non-trivial solution which means the system will have infinitely many solutions.

    Given: \(2 x-3 y=0\) and \(2 x+a y=0\)

    These equations can be written as: \(A X=B\) where,

    \(A=\left[\begin{array}{cc}2 & -3 \\ 2 & \alpha\end{array}\right], X=\left[\begin{array}{l}x \\ y\end{array}\right]\) and \(B=\left[\begin{array}{l}0 \\ 0\end{array}\right]\)

    As we know that, the given system is a homogenous system of equation. So, in order to say that the system has infinitely many solutions: \(|A|=0\).

    \(| A |=2 \alpha+6=0\)

    \(\Rightarrow \alpha=-3\)

  • Question 7
    4 / -1

    If \(z_{1}\) and \(z_{2}\) are two distinct complex numbers satisfying the relation \(\left|z_{1}^{2}-z_{2}^{2}\right|=\left|\bar{z}_{1}^{2}+\bar{z}_{2}^{2}-2 \bar{z}_{1} \bar{z}_{2}\right|\) and \(\left(\arg z_{1}-\arg z_{2}\right)=\frac{a \pi}{b},\) then the least possible value of \(|a-b|\) is equal to: (where, \(a \& b\) are integers)

    Solution

    \(\left|z_{1}^{2}-z_{2}^{2}\right|=\left|\bar{z}_{1}^{2}+\bar{z}_{2}^{2}-2 \bar{z}_{1} \bar{z}_{2}\right|\)

    \(\left|z_{1}^{2}-z_{2}^{2}\right|=\left|z_{1}^{2}+z_{2}^{2}-2 z_{1} z_{2}\right|\)

    \(\left|z_{1}+z_{2}\right|\left|z_{1}-z_{2}\right|=\left|z_{1}-z_{2}\right| \mid z_{1}-z_{2}\)

    \(\Rightarrow\left|z_{1}+z_{2}\right|=\left|z_{1}-z_{2}\right|\)

    \(\overline{z_{1}} \perp \overline{z_{2}}\)

    \(\Rightarrow \arg \left(\frac{z_{1}}{z_{2}}\right)=2 n \pi \pm \frac{\pi}{2}\)

    i.e. \(-\frac{\pi}{2}, \frac{\pi}{2}, \frac{3 \pi}{2}, \ldots \ldots \ldots\)

    The minimum value of \(|a-b|=1\) (when \(a=1 \& b=2)\)

  • Question 8
    4 / -1

    Find the middle terms in the expansion of \(\left(1+3 x+3 x^{2}+x^{3}\right)^{2 n}\).

    Solution

    Given:

    \(\left(1+3 x+3 x^{2}+x^{3}\right)^{2 n}\)

    \(=(1+x)^{6 n}\)

    Here, \(n\) is an even number.

    So the middle terms is \((\frac{6 n}{2} { +1})=(3 n+1)^{\text {th }}\) term

    So terms \((3 n+1)^{\text {th }}\) term is:

    \(T_{3 n+1}={ }^{6 n} C_{3 n} x^{3 n} \)

    \(=\frac{(6 n) !}{(3 n!)^{2}} x^{3 n}\)

  • Question 9
    4 / -1

    A chord subtends an angle \(=120^{\circ}\)at the center of a unit circle. What is the length of the chord?

    Solution

    Given,

    \(r=1\) and angle \(=120^{\circ}\)

    Length of chord \(=2 r \sin \left(\frac{\theta}{2}\right)\)

    Where \(r\) is the radius of the circle and \(\theta\) is the angle from the center of the circle to the two points of the chord.

    Now, Length of chord

    \(=2(1) \sin \left(\frac{120^{\circ}}{2}\right) \)

    \(=2 \sin \left(60^{\circ}\right) \)

    \(=2 \times \frac{\sqrt{3}}{2} \)

    \(=\sqrt{3} \text { units }\)

  • Question 10
    4 / -1
    Find the eccentricity of the ellipse \(4 x^{2}+8 y^{2}=24\).
    Solution
    The given equation of the ellipse is \(4 x^{2}+8 y^{2}=24\).
    Now, convert equation in the standard form,
    \(\frac{x^{2}}{6}+\frac{y^{2}}{3}=1\)
    Therefore, \(a^{2}=6\) and \(b^{2}=3 \)
    Now, for any ellipse using the relation we can write
    \(3=6\left(1-{e}^{2}\right)\)
    \(\Rightarrow e^{2}=\frac{1 }{ 2}\)
    \(\Rightarrow e=\frac{1}{\sqrt{2}}\)
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now