First we shall find the point of intersection of the curve \(\mathrm{y}^{2}=2 \mathrm{x}\) and the straight line \(\mathrm{y}=\mathrm{x}\)
Put \(y=x\) in \(y^{2}=2 x,\) we get
\(\Rightarrow x^{2}=2 x\)
\(\Rightarrow x^{2}-2 x=0\)
\(\Rightarrow x(x-2)=0\)
\(\Rightarrow x=0\) or \(x=2\)
\(\Rightarrow y=0\) or \(y=2\)
Hence, (0,0) and (2,2) are the point of intersection of the curve \(\mathrm{y}^{2}=2 \mathrm{x}\) and the straight line \(y=x\).

The area under the curve \(\mathrm{y}=\mathrm{f}(\mathrm{x})\) between \(\mathrm{x}=\mathrm{a}\) and \(\mathrm{x}=\mathrm{b},\) is given by, Area \(=\) \(\int_{\mathrm{x}=\mathrm{a}}^{\mathrm{x}=\mathrm{b}} \mathrm{f}(\mathrm{x}) \mathrm{dx}\)
Here, \(f(x)=(\sqrt{2 x}-x)\)
Hence, Area \(=\int_{\mathrm{x}=0}^{\mathrm{x}=2}(\sqrt{2 \mathrm{x}}-\mathrm{x}) \mathrm{dx}\)
Area \(=\left[\frac{\mathrm{x}^{\frac{3}{2}}}{\frac{3}{2}}-\frac{\mathrm{x}^{2}}{2}\right]_{0}^{2}\)
Area \(=\left[\frac{2^{\frac{3}{2}}}{\frac{3}{2}}-\frac{2^{2}}{2}\right]-0\)
Area \(=\frac{2}{3}\)
Hence, the area of the region enclosed between the curve \(\mathrm{y}^{2}=2 \mathrm{x}\) and the straight line \(\mathrm{y}\) \(=x\) is \(\frac{2}{3}\)