It is given that \(f: R-\left\{-\frac{4}{3}\right\} \rightarrow R\) be a function as \(f(x)=\frac{4 x}{3 x+4}\)
Let \(y\) be an arbitrary element of Range \(f\).
Then, there exists \(x \in R-\left\{-\frac{4}{3}\right\}\) such that \(y=f(x)\)
\(\Rightarrow y=\frac{4 x}{3 x+4}\)
\(\Rightarrow 3 x y+4 y=4 x\)
\(\Rightarrow x(4-3 y)=4 y\)
\(\Rightarrow x=\frac{4 y}{4-3 y}\)
Let us define g: Range \(\mathrm{f} \rightarrow \mathrm{R}-\left\{-\frac{4}{3}\right\}\) as \({g}({y})=\frac{4 {y}}{4-3 {y}}\)
Now, \(g o f(x)=g(f(x))=g\left(\frac{4 x}{3 x+4}\right)=\frac{4\left(\frac{4 x}{3 x+4}\right)}{4-3\left(\frac{4 x}{3 x+4}\right)}=\frac{16 x}{12 x+16-12 x}=\frac{16 x}{16}=x\)
and \(f o g(y)=f(g(y))=f\left(\frac{4 y}{4-3 y}\right)=\frac{4\left(\frac{4 y}{4-3 y}\right)}{3\left(\frac{4 y}{4-3 y}\right)+4}=\frac{16 y}{12 y+16-12 y}=\frac{16 y}{16}=y\)
\(\therefore g o f=I_{R-\left\{-\frac{4}{3}\right\}}\) and fog \(=I_{\text {Range } f}\)
Thus, \(g\) is the inverse of \(f\) i.e. \(f^{-1}=g\).
Thus, the inverse of \(f\) is the map \(g:\) Range \(f \rightarrow R-\left\{-\frac{4}{3}\right\},\) which is given by \(g(y)=\frac{4 y}{4-3 y}\).