Self Studies

Mathematics Test-32

Result Self Studies

Mathematics Test-32
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    4 / -1

    The Cartesian equation of a line are \(\frac{x-2}{2}=\frac{y+1}{3}=\frac{z-3}{-2}\). What is its vector equation?

    Solution

    we know, when a line passing through a print \(\vec{a}\) and perallel to the vector \(\vec{b}\), the equation of line,

    \(\vec{r}=a+\lambda \vec{b}\)

    Given line, \(\frac{x-2}{2}=\frac{y+1}{3}=\frac{z-3}{-2}\)

    we see that this line passing through the point \((2,-1,3)\) and parallel to the vector \((2 \hat{i}+3 \hat{j}-2 \hat{k})\)

    Therefor the vector equation of this line

    \(\vec{r}=(2 \hat{i}-\hat{j}+3 \hat{k})+\lambda(2 \hat{i}+3 \hat{j}-2 \hat{k})\)

  • Question 2
    4 / -1

    Which term of the GP 2, 6, 18, 54, ..... is 4374?

    Solution

    Given,

    The sequence 2, 6, 18, 54, ..... is a GP.

    Here, we have to find which term of the given sequence is 4374.

    As we know that, the the general term of a GP is given by:

    \(a_{n}=a r^{n-1}\)

    Here, \(a=2, r=3\) and let \(a_{n}=4374\)

    \(\Rightarrow 4374=(2) \cdot(3)^{n-1}\)

    \(\Rightarrow 3^{n-1}=2187\)

    \(\Rightarrow 3^{n-1}=3^{7}\)

    \(\Rightarrow n-1=7\)

    \(\Rightarrow n = 8\)

    Thus, 4374 is the 8th term of the given sequence.

  • Question 3
    4 / -1

    If \(\mathrm{X}=\left\{8^{\mathrm{n}}-7 \mathrm{n}-1, \mathrm{n} \in \mathbf{N}\right\}\) and \(\mathrm{Y}=49(\mathrm{n}-1), \mathrm{n} \in \mathbf{N},\) then: \((\) given \(\mathrm{n}>1)\)

    Solution

    Given, 

    \(\mathrm{X}=8^{\mathrm{n}}-7 \mathrm{n}-1\)

    \(=(1+7)^{\mathrm{n}}-7 n-1\)

    \(=1+7 \mathrm{n}+\frac{\mathrm{n}(\mathrm{n}-1)}{2} 7^{2}+\ldots+7^{\mathrm{n}}-7 \mathrm{n}-1\)

    \(=\frac{\mathrm{n}(\mathrm{n}-1)}{2} 7^{2}+\ldots+7^{\mathrm{n}}\)

    \(=49\left[\frac{\mathrm{n}(\mathrm{n}-1)}{2}+\ldots+7^{\mathrm{n}-2}\right]\)

    So, the set \(\mathrm{X}\) will be some specific multiples of \(49\).

    \(\Rightarrow\)\(\mathrm{Y}=49(\mathrm{n}-1)\)

    Therefore, the set \(Y\) will be all multiples of \(49 .\) So, it will contain the elements of \(\mathrm{X}\) too.

    So, \(\mathrm{X} \subset \mathrm{Y}\)

  • Question 4
    4 / -1

    Find the conjugate of \(\frac{\mathrm{i}+3}{2 \mathrm{i}+1}\).

    Solution
    For any complex number \(z=x+ iy\) the conjugate \(\bar{z}\) is given by,
    \(\bar{z}=x-i y\)
    \(z=\frac{i+3}{2 i+1}\)
    \(z=\frac{i+3}{2 i+1} \times \frac{-2 i+1}{-2 i+1}\)
    Multiply numerator and denominator with \({-2 i+1}\), we get
    \(\Rightarrow z=\frac{-2 i^{2}-6 i+i+3}{1-(2 i)^{2}}\)
    \(\Rightarrow z=\frac{5-5 i}{1+4}\)
    \(\Rightarrow z=\frac{5(1-i)}{5}\)
    \(\Rightarrow z=1-i\)
    Conjugate of \(z=\bar{z}=1+i\)
  • Question 5
    4 / -1

    The quadratic equation whose roots are \(7+\sqrt{3}\) and \(7-\sqrt{3}\) is:

    Solution

    We know that, the general form of a quadratic equation is

    \(x^2-(M+N) x-M N=0\)

    Here, \(M\) and \(N\) are the roots of the equation.

    Let \(1^{\text {st}}\) root \(M=7+\sqrt{3}\)

    And \(2^{\text {nd }}\) is \(N=7-\sqrt{3}\)

    By puting the value of \(M\) and \(N\) and solving them, we get,

    \(x^2-(7+\sqrt{3}+7-\sqrt{3}) x+[(7+\sqrt{3}) \times(7-\sqrt{3})]=0\)

    We know that,

    \(\left[(a+b)(a-b)=\left(a^2-b^2\right)\right]\)

    Then, \(x^2-14 x+(49-3)=0\)

    So the quadratic equation is \(x^2-14 x+46=0\)

  • Question 6
    4 / -1

    If \(\theta\) is an acute angle such that \(\sec ^2 \theta=3\), then the value of \(\frac{\tan ^2 \theta-\operatorname{cosec}^2 \theta}{\tan ^2 \theta+\operatorname{cosec}^2 \theta}\) is:

    Solution

    \(\sec ^2 \theta=3 \Rightarrow \sec \theta=\frac{\sqrt{3}}{1}=\frac{\text { Hypotenuse }}{\text { Base }}\)

    By Pythagoras Theorem,

    \((\text {Hypotenuse})^2=(\text {Base})^2+(\text {Altitude})^2\)

    \((\sqrt{3})^2=(1)^2+(\text {Altitude})^2 \)

    \(\Rightarrow 3=1+(\text {Altitude})^2 \Rightarrow(\text {Altitude})^2=3-1=2 \)

    \(\therefore \text { Altitude }=\sqrt{2}\)

    \(\therefore \tan \theta=\frac{\text { Altitude }}{\text { Base }}=\frac{\sqrt{2}}{1}=\sqrt{2} \)

    \(\operatorname{cosec} \theta=\frac{\text { Hypotenuse }}{\text { Altitude }}=\frac{\sqrt{3}}{\sqrt{2}}=\sqrt{\frac{3}{2}}\)

    Now, \(\frac{\tan ^2 \theta-\operatorname{cosec}^2 \theta}{\tan ^2 \theta+\operatorname{cosec}^2 \theta}\)

    \(=\frac{(\sqrt{2})^2-\left(\sqrt{\frac{3}{2}}\right)^2}{(\sqrt{2})^2+\left(\sqrt{\frac{3}{2}}\right)^2}=\frac{2-\frac{3}{2}}{2+\frac{3}{2}}\)

    \(=\frac{\frac{1}{2}}{\frac{7}{2}}=\frac{1}{2} \times \frac{2}{7}=\frac{1}{7}\)

  • Question 7
    4 / -1

    The differential form of the equation \(y ^2+( x - b )^2= c\)

    Solution

    Given equation is \(y ^2+( x - b )^2= c\)

    There are two constants \(b\) and \(c\) so differentiate two times

    Differentiating w.r.t \(x\)

    \(2 y \frac{d y}{d x}+2(x-b)=0 \)

    \(y \frac{d y}{d x}=b-x\)

    Differentiating again w.r.t \(x\)

    \(\left(\frac{d y}{d x}\right)^2+y \frac{d^2 y}{d x^2}=-1 \)

    \(y \frac{d^2 y}{d x^2}+\left(\frac{d y}{d x}\right)^2+1=0\)

  • Question 8
    4 / -1

    What is one of the square roots of \(3+4 i\), where \(i=\sqrt{-1} \)?

    Solution
    Let \(\sqrt{(3+4 i)}=\sqrt{{x}}+{i}\sqrt{{y}}\)
    \((\sqrt{3+4 i})^{2}=(\sqrt{x}+i \sqrt{y})^{2}\)
    \(\Rightarrow 3+4 i=x-y+2 i \sqrt{x y}\)
    Comparing real & imaginary part, we get,
    \(3=x-y \) and \(2 \sqrt{x y}=4 \Rightarrow x y=4\)
    We know, \((x+y)^{2}=(x-y)^{2}+4 x y\)
    \(\Rightarrow(x+y)^{2}=9+16\)
    \(\Rightarrow {x}+{y}=\pm 5 ({x} \neq-5;\) As \(\sqrt{{x}}\) is real part\()\)
    \(\therefore {x}=4, {y}=1\)
    \(\Rightarrow \sqrt{{x}}=\pm 2, \sqrt{{y}}=\pm 1\)
    \(\therefore\) Square root of \(3+4 i\) is \(2+i\).
  • Question 9
    4 / -1

    One of the roots of the quadratic equation \(a^2 x^2-3 a b x+2 b^2=0\) is:

    Solution

    Given equation is:

    \(a^2 x^2-3 a b x+2 b^2=0\)

    \(\Rightarrow a^2 x^2-2 a b x-abx+2 b^2=0\)

    \(\Rightarrow a x(a x-2 b)-b(a x-2 b)=0\)

    \(\Rightarrow (a x-b)(a x-2 b)=0\)

    If \(a x-b=0\)

    \(\therefore x=\frac{b}{a}\)

    If \(a x-2 b=0\)

    \(\therefore x=\frac{2 b}{a}\)

    So the roots are \(\frac{b}{a}\) and \(\frac{2 b}{a}\).

  • Question 10
    4 / -1

    Let \(f: R-\left\{-\frac{4}{3}\right\} \rightarrow R\) be a function as \(f(x)=\frac{4 x}{3 x+4}\). The inverse of \(f\) is map \(g:\) Range \(f \rightarrow R-\left\{-\frac{4}{3}\right\}\) given by:

    Solution

    It is given that \(f: R-\left\{-\frac{4}{3}\right\} \rightarrow R\) be a function as \(f(x)=\frac{4 x}{3 x+4}\)

    Let \(y\) be an arbitrary element of Range \(f\).

    Then, there exists \(x \in R-\left\{-\frac{4}{3}\right\}\) such that \(y=f(x)\)

    \(\Rightarrow y=\frac{4 x}{3 x+4}\)

    \(\Rightarrow 3 x y+4 y=4 x\)

    \(\Rightarrow x(4-3 y)=4 y\)

    \(\Rightarrow x=\frac{4 y}{4-3 y}\)

    Let us define g: Range \(\mathrm{f} \rightarrow \mathrm{R}-\left\{-\frac{4}{3}\right\}\) as \({g}({y})=\frac{4 {y}}{4-3 {y}}\)

    Now, \(g o f(x)=g(f(x))=g\left(\frac{4 x}{3 x+4}\right)=\frac{4\left(\frac{4 x}{3 x+4}\right)}{4-3\left(\frac{4 x}{3 x+4}\right)}=\frac{16 x}{12 x+16-12 x}=\frac{16 x}{16}=x\)

    and \(f o g(y)=f(g(y))=f\left(\frac{4 y}{4-3 y}\right)=\frac{4\left(\frac{4 y}{4-3 y}\right)}{3\left(\frac{4 y}{4-3 y}\right)+4}=\frac{16 y}{12 y+16-12 y}=\frac{16 y}{16}=y\)

    \(\therefore g o f=I_{R-\left\{-\frac{4}{3}\right\}}\) and fog \(=I_{\text {Range } f}\)

    Thus, \(g\) is the inverse of \(f\) i.e. \(f^{-1}=g\).

    Thus, the inverse of \(f\) is the map \(g:\) Range \(f \rightarrow R-\left\{-\frac{4}{3}\right\},\) which is given by \(g(y)=\frac{4 y}{4-3 y}\).

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now