Self Studies

Mathematics Test-33

Result Self Studies

Mathematics Test-33
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    4 / -1

    If \(\mathrm{i} \mathrm{z}^{3}+\mathrm{z}^{2}-\mathrm{z}+\mathrm{i}=0\) then \(|\mathrm{z}|\) equal to:

    Solution

    We have,

    \({i} {z}^{3}+{z}^{2}-{z}+{i}=0\)

    On dividing by \({i}\), we get

    \(\Rightarrow {z}^{3}+\frac{{z}^{2}}{{i}}-\frac{{z}}{{i}}+1=0\)

    \(\Rightarrow {z}^{3}-{i} {z}^{2}+{i} {z}+1=0 \quad\left[\because \frac{1}{{i}}=-{i}\right]\)

    \(\Rightarrow {z}^{3}-{i} {z}^{2}+{iz}-{i}^{2}=0 \quad\left[\because {i}^{2}=-1\right]\)

    \(\Rightarrow {z}^{2}({z}-{i})+{i}({z}-{i})=0\)

    \(\Rightarrow\left({z}^{2}+{i}\right)({z}-{i})=0\)

    So, \(z=i\) or \(z^{2}=-i\).

    Now, \(z=i \)

    \(\Rightarrow|z|=|i|\)

    \(\Rightarrow|z|=1\)

    And, \(z^{2}=-i\)

    \(\Rightarrow\left|z^{2}\right|=|-i|=1\)

    \(\Rightarrow|z|=1\)

  • Question 2
    4 / -1

    Let \(A(\vec{a}), B(\vec{b}), C(\vec{c})\) be the vertices of the triangle \(A B C\) and let \(D E F\) be the midpoints of the sides \(B C, C A, A B\) respectively. If \(P\) divides the median \(AD\) in the ratio \(2: 1\) then the position vector of \(P\) is:

    Solution

    \(A(\vec{a}), B(\vec{b}), C(\vec{c})\) are the vertices of the triangle \(A B C\).

     

    \(D\) is the midpoint of \(BC\)

    \(\Rightarrow D =\left(\frac{\overrightarrow{ b }+\overrightarrow{ c }}{2}\right)\)

    \(E\) is the midpoint of \(CA\)

    \(\Rightarrow E=\left(\frac{\vec{a}+\vec{c}}{2}\right)\)

    \(F\) is the midpoint of \(A B\)

    \(\Rightarrow F =\left(\frac{\overrightarrow{ a }+\overrightarrow{ b }}{2}\right)\)

    Now, \(AD , BE\) and \(CF\) are the medians of triangle \(ABC\)

    All three medians intersects at point \(P\).

    \(\because P\) divides \(AD\) in the ratio \(2: 1\) and other medians also intersect at \(P\).

    \(\Rightarrow P\) divides all three medians in the ratio \(2: 1\)

    \(\Rightarrow P\) is the centroid of the triangle \(ABC\).

    The position vector of the centroid of a triangle \(ABC\) with position vectors of the vertices being \(\vec{a}, \vec{b}\) and \(\vec{c}\) respectively is given by:

    \(P=\frac{\vec{a}+\vec{b}+\vec{c}}{3}\)

  • Question 3
    4 / -1

    If \(A=\left[\begin{array}{ll}0 & 5 \\ 0 & 0\end{array}\right]\) and \(f(X)=1+x+x^2+\ldots .+x^{16}\), then \(f(A)=?\)

    Solution

    Clearly \(f(A)=I+A+A^2+\ldots \ldots+A^{16}\)

    \(A^2=A A=\left[\begin{array}{ll}0 & 5 \\ 0 & 0\end{array}\right]\left[\begin{array}{ll}0 & 5 \\ 0 & 0\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]=O\)

    \(A^3=0, A^4=0, \ldots \ldots A^{16}=0\)

    \(\therefore f(A)=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]+\left[\begin{array}{ll}0 & 5 \\ 0 & 0\end{array}\right]+0+0+\ldots \ldots+0\)

    \(=\left[\begin{array}{ll}1 & 5 \\ 0 & 1\end{array}\right]\)

  • Question 4
    4 / -1

    In An A.P. twenty fifth term is 70 more than to fifteen term. Find the common differences.

    Solution

    Let the first element of A.P. is 'a' and common difference is 'd'.

    T25 = T15 + 70

    According to the question,

    T25 = T15 + 70

    As we know,

    \(a_{n}=a+(n-1) d\)

    ⇒ a + (25 – 1)d = a + ( 15 – 1)d + 70

    ⇒ 24d – 14d = 70

    ⇒ 10d = 70

    ⇒ d = 7

    ∴ The common difference is 7.

  • Question 5
    4 / -1

    If \(a, b, c\) are real numbers, then the value of the determinant

    \(\left|\begin{array}{lll}1-a & a-b-c & b+c \\ 1-b & b-c-a & c+a \\ 1-c & c-a-b & a+b\end{array}\right|\)

    Solution

    Let \(\Delta=\left|\begin{array}{lll}1-a & a-b-c & b+c \\ 1-b & b-c-a & c+a \\ 1-c & c-a-b & a+b\end{array}\right|\)

    Applying \(C _2 \rightarrow C _2+ C _3\), we get:

    \(\Delta=\left|\begin{array}{lll}1-a & a & b+c \\ 1-b & b & c+a \\ 1-c & c & a+b\end{array}\right|\)

    Applying \(C _1 \rightarrow C _1+ C _2, C _3 \rightarrow C _3+ C _2\) we get:

    \(\Delta=\left|\begin{array}{lll}1 & a & a+b+c \\ 1 & b & b+c+a \\ 1 & c & c+a+b\end{array}\right|\)

    Taking common \(a + b + c\) from \(C _3\), we get:

    \(\Delta=(a+b+c)\left|\begin{array}{lll}1 & a & 1 \\ 1 & b & 1 \\ 1 & c & 1\end{array}\right|\)

    We know that if two columns of a determinant are identical, the value of the determinant is zero.

    \(\therefore \Delta=0\)

  • Question 6
    4 / -1

    Let \(\vec{b}=4 \hat{i}+3 \hat{j}\) and \(\vec{c}\) be two vector perpendicular to each other in the \(x y-\) plane. Then a vector in the same plane having projections 1 and 2 along \(\vec{b}\) and \(\vec{c}\), respectively, is:

    Solution

    Let \(\vec{c}=x \hat{i}+y \hat{j}\), then

    \(\vec{b} \perp \vec{c} \Rightarrow \vec{b} \cdot \vec{c}=4 x+3 y=0\)

    \(\Rightarrow \frac{x}{3}=\frac{y}{-4}=\lambda\)

    \(\Rightarrow x=3 \lambda\)

    \(y=-4 \lambda\)

    \(\therefore \vec{c}=\lambda(3 \hat{i}-4 \hat{j})\)

    Let the required vector be \(\vec{a}=a_1 \hat{i}+a_2 \hat{j}\), then the projections of \(\vec{a}\) on \(\vec{b}\) and \(\vec{c}\) are \(\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}\) and \(\frac{\vec{a} \cdot \vec{c}}{|\vec{c}|}\) respectively

    \(\therefore \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}=1\) and \(\frac{\vec{a} \cdot \vec{c}}{|\vec{c}|}=2\) (given)

    \(\Rightarrow 4 a_1+3 a_2=5\)

    and \(3 a_1-4 a_2=10\)

    \(\Rightarrow a_1=2, a_2=-1\)

    Therefore, the required vector \(=2 \hat{i}-\hat{j}\)

  • Question 7
    4 / -1

    Which one of the following is correct in respect of the function f : R → R+ defined as f(x) = |x+1|?

    Solution

  • Question 8
    4 / -1

    If \((1+i)(1+2 i)(1+3 i) \ldots(1+n i)=\alpha+i \beta\) then \(2.5 .10 \ldots\left(1+n^{2}\right)\):

    Solution
    Given:
    \(\Rightarrow(1+i)(1+2 i)(1+3 i) \ldots .(1+n i)=\alpha+i \beta\)
    If we take modulus on both sides,
    \(\Rightarrow \sqrt{(1+1)\left(1+2^{2}\right) \ldots\left(1+n^{2}\right)}\) \(=\sqrt{\left(a^{2}+\beta^{2}\right)}\)
    Squaring both sides,
    \(\Rightarrow\)\(2.5 .10 \ldots.\left(1+n^{2}\right) =\) \(\left(\alpha^{2}+\beta^{2}\right)\)
  • Question 9
    4 / -1

    Solution

  • Question 10
    4 / -1

    A _________ is a simple closed curve all of whose points are at the same distance from a fixed point.

    Solution

    A circle is a simple closed curve all of whose points are at the same distance from a fixed point.

    A circle is a figure consisting of all points in a plane that lie at a given point, a certain distance from the center; uniformly it is a curve formed by a point that moves in a plane so that its distance from a given point is constant. The distance between any point on the circle and the center is called the radius. Radius is a positive number.


Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now