Self Studies

Mathematics Test-35

Result Self Studies

Mathematics Test-35
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    4 / -1

    The value of \(x\), satisfying the equation \(\log _{\cos x} \sin x=1\), where \(0

    Solution

    Given,

    \(\log _{\cos x} \sin x=1\)

    \(\frac{\log \sin x}{\log \cos x}=1\)

    \(\sin x=\cos x\)

    The smallest positive value of \(x\) for which \(\sin x=\cos x\) is \(x=\frac{\pi}{4}\)

  • Question 2
    4 / -1

    The solution of \(x^2 \frac{d y}{d x}=x^2+x y+y^2\) will be:

    Solution

    \( x^2 \frac{d y}{d x}=x^2+x y+y^2 \)

    \(\Rightarrow \frac{d y}{d x}=1+\frac{y}{x}+\left(\frac{y}{x}\right)^2\)

    Substituting \(y=v x\) and \(\frac{d y}{d x}=v+x \frac{d v}{d x}\)

    \( \Rightarrow v + x \frac{ dv }{ dx }=1+ v + v ^2 \)

    \( \Rightarrow x \frac{ dv }{ dx }=1+ v ^2\)

    Integrating both sides we get,

    \(\int \frac{ dx }{ x }=\int \frac{ dv }{1+ v ^2}\)

    \(\Rightarrow \log x=\tan ^{-1} v + c , c =\) constant of integration

    Putting the value of \(v\) we get,

    \(\therefore \log x =\tan ^{-1} \frac{ y }{ x }+ c\)

  • Question 3
    4 / -1

    In the expansion of \(\left(\sqrt{x}+\frac{1}{3 x^2}\right)^{10}\) the value of constant term (independent of x) is:

    Solution

    Let \(r^{\text {th }}\) term is independent of x.

    \(T_r={ }^n C_r x^r y^{n-r}\)

    \(={ }^{10} C_r(\sqrt{x})^r\left(\frac{1}{3 x^2}\right)^{10-r}\)

    \(={ }^{10} C_r\left(\frac{1}{3}\right)^{10-r} \cdot(\sqrt{x})^r\left(\frac{1}{x^2}\right)^{10-r}\)

    Equating the coefficient of \(x\) to zero.

    \(\Rightarrow x^{\frac{r}{2}} \cdot x^{-2(10-r)}=x^0\)

    \(\Rightarrow \frac{r}{2}-20+2 r=0\)

    \(\Rightarrow \frac{5}{2} r=20 \Rightarrow r=8\)

    Coefficient \(={ }^{10} C_r\left(\frac{1}{3}\right)^{10-r}\)

    \(={ }^{10} C_8\left(\frac{1}{3}\right)^{10-8}=\frac{10 \times 9}{2} \times \frac{1}{9}=5\)

  • Question 4
    4 / -1

    What is the solution to differential equation \(\frac{d x}{d y}+\frac{x}{y}=0\)?

    Solution

    Given:

    \(\frac{d x}{d y}+\frac{x}{y}=0\)

    On solving, we get-

    \(\Rightarrow \frac{d x}{d y}=-\frac{x}{y}\)

    \(\Rightarrow \frac{d x}{x}=-\frac{d y}{y}\)

    \(\Rightarrow \ln x=-\ln y+k\) or

    \(\Rightarrow \ln x=\ln \frac{1}{y}+\ln c\)

    \(\Rightarrow \ln x=\ln \frac{c}{y}\)

    \(\Rightarrow x=\frac{c}{y}\)

    \(\Rightarrow x y=c\)

  • Question 5
    4 / -1

    If the roots of the equation x2 + bx + c = 0 are two consecutive integers, then b2 - 4ac is equal to:

    Solution

    Given:

    x2 + bx + c = 0

    The roots of the equation are two consecutive integers.

    Formula:

    Quadratic equation = x2 - (sum of roots)x + product of roots

    Calculation:

    x2 + bx + c = 0 ---(1)

    Let the roots are n, n + 1

    So, a quadratic equation will be

    x2 - (n + n + 1)x + n(n + 1) = 0

    ⇒ x2 - (2n + 1)x + n(n + 1) = 0

    So,

    ⇒ b2 - 4ac = (2n + 1)2 - 4n(n+ 1)

    ∵ (a + b)2 = a2 + 2ab + b2

    ⇒ b2 - 4ac = 4n2 + 4n + 1 - 4n2 - 4n

    ⇒ b2 - 4ac = 1

  • Question 6
    4 / -1
    How many four-digit numbers divisible by 10 can be formed using 1,5,0,6,7 without repetition of digits?
    Solution

    Four-digit numbers divisible by10 using 1,5,0,6,7.

    Divisibility by 10 \(\rightarrow\) no. should end with zero

    After fixing 'zero' at unit place, we are left with 4 numbers.

    After placing any number at tens place we are left with '3' numbers.

    After placing any number at tens and hundreds place.

    Total \(=4 \times 3 \times 2\)

    \(=24\)

  • Question 7
    4 / -1

    The direction cosines of the perpendicular from the origin to the plane \(\vec{r} \cdot(6 \hat{i}-3 \hat{j}+2 \hat{k})+1=0\) are:

    Solution

    Vector equation of a plane at a distance ' \(d\) ' from the origin and unit vector to normal from origin \(\hat{n}\) is

    \(\vec{r} \cdot \hat{n}= d\)

    Unit vector of \(\vec{n}=\hat{n}=\frac{1}{|\vec{n}|}(\vec{n})\)

    Given, equation of plane is

    \(\vec{r} \cdot(6 \hat{\imath}-3 \hat{\jmath}-2 \hat{k})+1=0 \)

    \(\vec{r} \cdot(6 \hat{\imath}-3 \hat{\jmath}-2 \hat{k})=-1\)

    Multiplying with -1 on both sides,

    \(-\vec{r} \cdot(6 \hat{\imath}-3 \hat{\jmath}-2 \hat{k})=-1 \times-1 \)

    \(\vec{r} \cdot(-6 \hat{\imath}+3 \hat{\jmath}+2 \widehat{k})=1\)

    Magnitude of \(\vec{n}=\sqrt{(-6)^2+3^2+2^2}\)

    \(|\vec{n}|=\sqrt{36+9+4}=\sqrt{49}=7\)

    Now,

    \(\widehat{n} =\frac{1}{|\vec{n}|}(\vec{n}) \)

    \(=\frac{1}{7}(-6 \hat{\imath}+3 \hat{\jmath}+2 \hat{k}) \)

    \(=\frac{-6}{7} \hat{\imath}+\frac{3}{7} \hat{\jmath}+\frac{2}{7} \widehat{k}\)

    \(\therefore\) Direction cosines of unit vector perpendicular to the given plane i.e. in are \(\frac{-6}{7}, \frac{3}{7}, \frac{2}{7}\).

  • Question 8
    4 / -1

    What is \(\int \frac{(\cos x)^{1.5}-(\sin x)^{1.5}}{\sqrt{\sin x \cdot \cos x}} d\) equal to ?

    Solution

    Given:

    \(I =\int \frac{(\cos x)^{1.5}-(\sin x)^{1.5}}{\sqrt{\sin x \cdot \cos x}} d x\)

    \(\Rightarrow I =\int \frac{\cos x}{\sqrt{\sin x}}-\frac{\sin x}{\sqrt{\cos x}} d x\)

    \(\Rightarrow I =\int \frac{\cos x}{\sqrt{\sin x}} d x-\int \frac{\sin x}{\sqrt{\cos x}} d x= I _1- I _2\) (let)

    Computing \(I _1\),

    \(I _1=\int \frac{\cos x}{\sqrt{\sin x}} d x\)

    Put \(\sin x=t \rightarrow \cos x d x=d t\)

    \(\Rightarrow I_1=\int \frac{d t}{\sqrt{t}}=\frac{t^{-\frac{1}{2}+1}}{-\frac{1}{2}+1}+c_1\)

    \(\Rightarrow I_1=2 \sqrt{t}+c_1\)

    \(\Rightarrow I_1=2 \sqrt{\sin x}+c_1\)

    Similarly,

    \(I _2=\int \frac{\sin x}{\sqrt{\cos x}} d x\)

    Put \(\cos x=t \rightarrow-\sin x d x=d t\)

    \(\Rightarrow I_2=\int \frac{d t}{\sqrt{t}}=-\frac{t^{-\frac{1}{2}+1}}{-\frac{1}{2}+1}+c_2\)

    \(\Rightarrow I_2=-2 \sqrt{t}+c_2\)

    \(\Rightarrow I_2=-2 \sqrt{\cos x}+c_2\)

    Putting these value in \(I\),

    \(\Rightarrow I=I_1-I_2=2 \sqrt{\sin x}+c_1-(-2 \sqrt{\cos x})+c_2\)

    \(\Rightarrow I=2 \sqrt{\sin x}+2 \sqrt{\cos x}+c\)

  • Question 9
    4 / -1

    Let \(\mathrm{A}=\left[\begin{array}{ccc}0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0\end{array}\right]\). The only correct statement about the matrix \(\mathrm{A}\) is:

    Solution

    Given:

    \(\mathrm{A}=\left[\begin{array}{ccc}0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0\end{array}\right]\)

    \(\mathrm{A}^2=\left[\begin{array}{ccc}0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0\end{array}\right]\left[\begin{array}{ccc}0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\)

    \(\therefore \mathrm{A}^2=\mathrm{I}\)

  • Question 10
    4 / -1

    If the points \(A (-1,3,2), B (-4,2,-2)\) and \(C(5,5, \lambda)\) are collinear then the value of \(\lambda\) is:

    Solution

    Given points \(A(-1,3,2), B(-4,2,-2)\) and \(C(5,5, \lambda)\)

    Let the point \(A, B, C\) are collinear.

    So, the point \(A, B, C\) lie on the same line.

    We construct line \(A B\) and point \(C\) also lie on the line \(A B\).

    Direction ratio of \({A B}=(-4+1,2-3,-2-2)=(-3,-1,-4)\)

    Direction ratio of\({A C}=(5+1,5-3, \lambda-2)=(6,2, \lambda-2)\)

    As we know that equation of a line if two points are given,

    \(\frac{\left(x-x_1\right)}{a}=\frac{\left(y-y_1\right)}{b}=\frac{\left(z-z_1\right)}{c}\)

    where a, b and c are direction ratio.

    Equation of \(A B\),

    \(\frac{x+1}{-3}=\frac{4-3}{-1}=\frac{z-2}{-4}\)

    \(\frac{x+1}{3}=\frac{4-3}{1}=\frac{z-2}{4}=\)(1)

    If point \(C\) lie on this line because all three points are collinear. So, co-ordinate of point C will satisfy the equation (1).

    Then, we get,

    \(\frac{5+1}{3}=\frac{5-3}{1}=\frac{\lambda-2}{4}\)

    Now, \(\frac{\lambda-2}{4}=\frac{5+1}{3}=2\)

    \(\lambda-2=8\)

    \(\lambda=10\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now