Self Studies

Mathematics Test-37

Result Self Studies

Mathematics Test-37
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    4 / -1

    The value of \(\int_{\pi / 4}^{3 \pi / 4} \frac{d x}{1+\cos x}\) is:

    Solution

    Given:

    \(I=\int_{\frac{\pi }{ 4}}^{\frac{3 \pi }{ 4}} \frac{d x}{1+\cos x}\)

    Multiply and divide by (1 - cos x) in numrator and denominator.

    \(=\int_{\frac{\pi}{4}}^{\frac{3 x}{4}} \frac{1-\cos x}{(1+\operatorname{cos} x)(1-\cos x)} d x\)

    \(=\int_{\frac{\pi}{4}}^{\frac{3 \pi}{4}} \frac{1-\cos x}{\sin ^{2} x} d x\)

    \(=\int_{\frac{\pi}{4}}^{\frac{3 \pi}{4}}\left(\operatorname{cosec}^{2} x-\operatorname{cosec} x \cdot \cot x\right) d x\)

    \(=[-\cot x+\operatorname{cosec} x]_{\frac{\pi }{ 4}}^{\frac{3 \pi }{ 4}}\)

    \(=-\cot \frac{3 \pi}{4}+\cot \frac{\pi}{4}+\operatorname{cosec} \frac{3 \pi}{4}-\operatorname{cosec} \frac{\pi}{4}\)

    \(=1+1+\sqrt{2}-\sqrt{2}\)

    \(=2\)

  • Question 2
    4 / -1

    The position vectors of \(A, B, C\) are \(\hat{i}+\hat{j}+\hat{k}, 4 \hat{i}+\hat{j}+\hat{k}, 4 \hat{i}+5 \hat{j}+\hat{k}\). Then the position vector of the circumcentre of the triangle \(ABC\) is:

    Solution

    Position vector of \(A\) is \(\hat{i}+\hat{j}+\hat{k}\), gives coordinates as \((1,1,1)\).

     

    Position vector of \(B\) is \(4 \hat{i}+\hat{j}+\hat{k}\), gives coordinates as \((4,1,1)\).

    Position vector of \(C\) is \(4 \hat{i}+5 \hat{j}+\hat{k}\), gives coordinates as \((4,5,1)\).

    \(\overrightarrow{A B}=\vec{B}-\vec{A}=3 \hat{i}\)

    \(\overrightarrow{B C}=\vec{C}-\vec{B}=4 \hat{j}\)

    \(\overrightarrow{A C}=\vec{C}-\vec{A}=3 \hat{i}+4 \hat{j}\)

    Here, we can see that \(\triangle A B C\) is a right-angled triangle with a right angle at \(B\).

    Hence, the circumcenter will be the midpoint of \(AC\).

    Midpoint of \(AC = D\)

    \(=\left(\frac{1+4}{2}, \frac{1+5}{2}, \frac{1+1}{2}\right)=\left(\frac{5}{2}, 3,1\right)\)

    So, the position vector of \(D\) will be\(\frac{1}{2}(5 \hat{i}+6 \hat{j}+2 \hat{k})\)which is a circumcenter.

  • Question 3
    4 / -1

    Find the coefficient of \(x^{11}\) in the expansion of \(\left(x^{3}-\frac{1}{x^{4}}\right)^{13}\):

    Solution
    Given:
    \(\left(x^{3}-\frac{1}{x^{4}}\right)^{13}\)
    \(\mathrm{T}_{\mathrm{r}+1}=(-1)^{\mathrm{r}} \times{ }^{13} \mathrm{C}_{\mathrm{r}} \times\left(\mathrm{x}^{3}\right)^{13-\mathrm{r}} \times\left(\frac{1}{\mathrm{x}^{4}}\right)^{\mathrm{r}}\)
    \(=(-1)^{\mathrm{r}} \times{ }^{13} \mathrm{C}_{\mathrm{r}} \times(\mathrm{x})^{39-3 \mathrm{r}} \times \mathrm{x}^{-4 \mathrm{r}}\)
    \(=(-1)^{\mathrm{r}} \times{ }^{13} \mathrm{C}_{\mathrm{r}} \times(\mathrm{x})^{39-7 \mathrm{r}}\) .....(i)
    We need the coefficient of \(\mathrm{x}^{11}\)
    So, on equating power of \(x\) in (i) with 11, we get,
    \(11=39-7 r\)
    \(\Rightarrow 7 r=28\)
    \(\Rightarrow r=4\)
    \(\Rightarrow r+1=5\)
    Now, \(T_{5}=T_{(4+1)}=(-1)^{4} \times{ }^{13} \mathrm{C}_{4} \times \mathrm{x}^{39-28}\)
    \(={ }^{13} \mathrm{C}_{4} \times \mathrm{x}^{11}\)
    \(\therefore\) Cofficient of \(\mathrm{x}^{11}={ }^{13} \mathrm{C}_{4}\)
    \(=\frac{13 \times 12 \times 11 \times 10}{4 \times 3 \times 2 \times 1}\)
    \(=715\)
  • Question 4
    4 / -1

    There are 10 people seated in two rows (5 in 1 row) and there are two types of food items. Each row can be served any of the two food items but it must be different from the other row. In how many ways the food can be served?

    Solution

    Number of ways 10 people can be seated in a row = \({ }^{10} {C}_{5}\)= 252

    Number of ways 5 people can be seated in one row = 5!

    Number of ways 5 people can be seated in the second row = 5!

    Number of ways the people of the rows can be arranged = 5! × 5!

    Number of ways 2 food items can be arranged among 2 rows = 2!

    = 2

    Total number of ways the food can be served to these people = 252 × 5! × 5! × 2

    = 7257600

    ∴ The people can be served in 7257600 ways.

  • Question 5
    4 / -1

    Two equal circles of radius \(r\) intersect such that each passes through the centre of the other. The length of the common chord of the circles is:

    Solution

    Given:

    The radius of the circle \(=\mathrm{r}\)

    As we know,

    \(A B\) is perpendicular bisector of \(O C\)

    \(\mathrm{OA}=\mathrm{r}\) (OA radius of the circle)

    \(\mathrm{OG}=\frac{1}{2} \times \mathrm{OC}=\frac{1}{2} \times \mathrm{r}\)

    In, \(\triangle \mathrm{OAG}\)

    \(\mathrm{AG} \perp \mathrm{OC}\)

    By Pythagoras theorem,

    \((\mathrm{H})^2=(\mathrm{P})^2+(\mathrm{B})^2\)

    \(\Rightarrow(\mathrm{GA})^2=(\mathrm{r})^2-\left(\frac{\mathrm{r}}{2}\right)^2\)

    \(\Rightarrow(\mathrm{GA})^2=\frac{3}{4} \times \mathrm{r}^2\)

    \(\Rightarrow G A=\frac{\sqrt{3}}{2} \times r\)

    \(A B=2 \times G A\)

    \(\Rightarrow A B=2 \times \frac{\sqrt{3}}{2} \times r\)

    \(\Rightarrow A B=\sqrt{3 r}\)

    So, The length of common chord of the circle is \(\sqrt{3} r\).

  • Question 6
    4 / -1

    Find the general solution of the differential equation \(y d x=(y-x) d y\).

    Solution

    As we know,

    The standard form of a linear equation of the first order is given by \(\frac{d y}{d x}+P y=Q\) where \(P, Q\) are arbitrary function of \(x\).

    The integrating factor of the linear equation is given by: \(I . F .=e^{\int p d x}\)

    The solution of the linear equation is given by: \(y(I . F.)=\int Q(I . F.) d x+\)\(c \)

    \(y d x=(y-x) d y\)

    \(y \frac{d x}{d y}=y-x\)

    \(\frac{d x}{d y}+\frac{x}{y}=1\)

    It is form of\(\frac{d x}{d y}+P x=Q\).

    \(I. F. =e^{\int p d y}\)

    \(I. F .=e^{l n y}=y\)

    The solution of the linear equation is given by,

    \(x(I . F)=.\int Q(I . F) d y+c\)

    \(x(y)=\int 1(y) d y+c\)

    \(x y=\frac{y^2}{2}+c\)

    \(x=\frac{y}{2}+\frac{c}{y}\)

  • Question 7
    4 / -1

    What is \(\lim _{x \rightarrow 1} \frac{x+x^{2}+x^{3}-3}{x-1}\) equal to?

    Solution

    \(\lim _{x \rightarrow 1} \frac{x+x^{2}+x^{3}-3}{x-1}\) Form \(\left(\frac{0}{0}\right)\)

    Apply L-Hospital Rule,

    \(=\lim _{x \rightarrow 1} \frac{\frac{d\left(x+x^{2}+x^{3}-3\right)}{d x}}{\frac{d(x-1)}{d x}}\)

    \(=\lim _{x \rightarrow 1} \frac{1+2 x+3 x^{2}-0}{1-0}\)

    \(=\frac{1+2 \times 1+3 \times 1^{2}-0}{1-0}\)

    \(=6\)

  • Question 8
    4 / -1

    \((\sin \alpha+\operatorname{cosec} \alpha)^{2}+(\cos \alpha+\sec \alpha)^{2}\) is equals to:

    Solution

    Formula used:

    \((a+b)^{2}=a^{2}+b^{2}+2 a b\)

    \(\sin \alpha=\frac 1 { \operatorname{cosec} \alpha}\)

    \(\cos \alpha=\frac 1 { \sec \alpha}\)

    \(\sin ^{2} \alpha+\cos ^{2} \alpha=1\)

    \(\operatorname{cosec}^{2} \alpha=1+\cot ^{2} \alpha\)

    \(\sec ^{2} \alpha=1+\tan ^{2} \alpha\)

    \((\sin \alpha+\operatorname{cosec} \alpha)^{2}+(\cos \alpha+\sec \alpha)^{2}\)

    \(\Rightarrow \sin ^{2} \alpha+\operatorname{cosec}^{2} \alpha+2 \sin \alpha \cdot \operatorname{cosec} \alpha+\cos ^{2} \alpha+\sec ^{2} \alpha+2 \cos \alpha \cdot \sec \alpha \quad[\because(a+b)^{2}=a^{2}+b^{2}+2 a b]\)

    \(\Rightarrow \sin ^{2} \alpha+\operatorname{cosec}^{2} \alpha+2+\cos ^{2} \alpha+\sec ^{2} \alpha+2 \quad\left[(\because \sin \alpha=\frac 1{ \operatorname{cosec} \alpha}\right.\) and \(\left.\cos \alpha=\frac 1{\sec \alpha}\right]\)

    \(\Rightarrow\left(\sin ^{2} \alpha+\cos ^{2} \alpha\right)+1+\cot ^{2} \alpha+1+\tan ^{2} \alpha+4 \quad\left[\because \sin ^{2} \alpha+\cos ^{2} \alpha=1 ; \operatorname{cosec}^{2} \alpha\right.=1+\cot ^{2} \alpha\) and \(\left.\sec ^{2} \alpha=1+\tan ^{2} \alpha\right]\)

    \(\Rightarrow \tan ^{2} \alpha+\cot ^{2} \alpha+7\)

  • Question 9
    4 / -1

    The cofactor of the element 4 in the determinant \(\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 5 & 8 & 9\end{array}\right]\) is:

    Solution

    We have \(\left[\begin{array}{ccc}1 & 2 & 3 \\ 4 & 5 & 6 \\ 5 & 8 & 9\end{array}\right]\)

    Eliminate row and column containing 4 we get:

    \(\left[\begin{array}{ll}2 & 3 \\ 8 & 9\end{array}\right]\)

    Now, determinant \(=2 \times 9-(8 \times 3)\)

    \(=-6\)

    Now from sign convention of \(3 \times 3\), matrix

    For element 4, sign is -ve: \(\quad \quad\quad\left(\because\left[\begin{array}{lll}+ & - & + \\ - & + & - \\ + & - & +\end{array}\right]\right)\)

    \(\therefore\) Cofactor of element 4 is 6.

  • Question 10
    4 / -1

    The triangle \(ABC\) is defined by the vertices \(A =(0,7,10), B =(-1,6,6)\) and \(C =(-4,9,6)\). Let \(D\) be the foot of the attitude from \(B\) to the side \(AC\) then \(BD\) is:

    Solution

    Given : \(A =(0,7,10), B =(-1,6,6)\) and \(C =(-4,9,6)\)

     

    Position vector(P.V.) of \(A B\) is \((-1,-1,-4)\)

    \(\Rightarrow|A B|=\sqrt{(-1)^2+(-1)^2+(-4)^2}=\sqrt{18}\)

    P.V. of \(BC\) is \((-3,3,0)\)

    \(\Rightarrow| BC |=\sqrt{(-3)^2+3^2+0}=\sqrt{18}\)

    P.V. of \(AC\) is \((-4,2,-4)\)

    \(\Rightarrow| AC |=\sqrt{(-4)^2+2^2+(-4)^2}=6\)

    Now, \(D\) is the midpoint of \(AC\)

    \(\Rightarrow D =\left(\frac{0-4}{2}, \frac{7+9}{2}, \frac{10+6}{2}\right)=(-2,8,8)\)

    \(\Rightarrow \overrightarrow{ BD }=-\hat{i}+2 \hat{ j }+2 \hat{ k }\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now