Self Studies

Mathematics Test-38

Result Self Studies

Mathematics Test-38
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    4 / -1

    \({I}=\int {e}^{{x}} \cdot \frac{1+\sin {x}}{1+\cos {x}} {d} {x}\) is equal to:

    Solution

  • Question 2
    4 / -1

    The sum of the 3rd and the 7th term of an A.P. is 30 and the sum of the 5th and the 9th term is 56. Find the sum of the 4th and the 8th terms of the same series.

    Solution

    Given,

    The sum of the 3rd and the 7th term of an A.P. is 30 and the sum of the 5th and the 9th term is 56.

    Let the first term of the A.P. be 'a' and the common difference 'd'.

    nth term of an A.P.,

    \(a_n = a + (n-1)d\)

    \(a_3 = a + (3-1)d\)

    \(\Rightarrow a_3 = a + 2d\)

    \(a_7 = a + (7-1)d\)

    \(\Rightarrow a_7 = a + 6d\)

    \(a_5 = a + (5-1)d\)

    \(\Rightarrow a_7 = a + 4d\)

    \(a_9 = a + (9-1)d\)

    \(\Rightarrow a_9 = a + 8d\)

    Therefore, we can write

    \({a}_{3}+a_{7}\) = 30

    a + 2d + a + 6d = 30

    2a + 8d = 30 ...(i)

    And, \({a}_{5}+a_{9}\) = 56

    a + 4d + a + 8d = 56

    2a + 12d = 56 ...(ii)

    On solving equation (i) and equation (ii), we get

    4a + 20d = 86

    2a + 10d = 43.....(iii)

    \({a}_{4}+a_{8}\) = a + (4-1)d + a + (8-1)d

    = a + 3d +a + 7d

    = 2a +10d

    From equation (i), we get

    The sum of the fourth and eighth terms of the series,

    \({a}_{4}+a_{8}\) = 43

  • Question 3
    4 / -1

    If \(\mathrm{f}(\mathrm{x}), \mathrm{g}(\mathrm{x})\) be twice differential functions on \([0,~2]\) satisfying \(\mathrm{f}^{\prime \prime}(\mathrm{x})=\mathrm{g}^{\prime \prime}(\mathrm{x}), \mathrm{f}^{\prime}(1)\) \(=2 g^{\prime}(1)=4\) and \(f(2)=3 g(2)=9,\) then:

    Solution

  • Question 4
    4 / -1

    If \(A=\left[\begin{array}{ccc}1 & 2 & -3 \\ 5 & 0 & 2 \\ 1 & -1 & 1\end{array}\right], B=\left[\begin{array}{ccc}3 & -1 & 2 \\ 4 & 2 & 5 \\ 2 & 0 & 3\end{array}\right]\), then find the value of \((A+B)\).

    Solution

    Given,

    \(A=\left[\begin{array}{ccc}1 & 2 & -3 \\ 5 & 0 & 2 \\ 1 & -1 & 1\end{array}\right], B=\left[\begin{array}{ccc}3 & -1 & 2 \\ 4 & 2 & 5 \\ 2 & 0 & 3\end{array}\right]\)

    \(\therefore A+B=\left[\begin{array}{ccc}1 & 2 & -3 \\ 5 & 0 & 2 \\ 1 & -1 & 1\end{array}\right]+\left[\begin{array}{ccc}3 & -1 & 2 \\ 4 & 2 & 5 \\ 2 & 0 & 3\end{array}\right]\)

    \(\Rightarrow \mathrm{A}+\mathrm{B}=\left[\begin{array}{ccc}1+3 & 2-1 & -3+2 \\ 5+4 & 0+2 & 2+5 \\ 1+2 & -1+0 & 1+3\end{array}\right]\)

    \(\Rightarrow \mathrm{A}+\mathrm{B}=\left[\begin{array}{ccc}4 & 1 & -1 \\ 9 & 2 & 7 \\ 3 & -1 & 4\end{array}\right]\)

  • Question 5
    4 / -1

    The image of the point \((-1,3,4)\) in the plane \(x-2 y=0\) is:

    Solution

    As we know that the point \((x_1, y_1, z_1)\) of \(a x+b y+c z+d=0\) is,

    \(\frac{x-x_1}{a}=\frac{y-y_1}{b}=\frac{z-z_1}{c}=\frac{-2\left(a x_1+b y_1+c z_1+d\right)}{a^2+b^2+c^2}\)

    So the point \((-1,3,4)\) in the plane \({x}-2 {y}=0\) is given by,

    \(\frac{x+1}{1}=\frac{y-3}{-2}=\frac{z-4}{0}=\frac{-2[1(-1)+(-2(+3) )+0(4)]}{1+4}\)

    \(\frac{x+1}{1}=\frac{y-3}{-2}=\frac{z-4}{0}=\frac{-2(-7)}{5}\)

    \(x=\frac{14}{5}-1=\frac{9}{5}\)

    \(y=\frac{-28}{5}+3=\frac{-13}{5}\) and \(z=4\)

    The point is \((\frac{9}{5}, \frac{-13}{5}, 4)\).

  • Question 6
    4 / -1

    Find the value of \(\left|\begin{array}{lll}0 & c & b \\ c & 0 & a \\ b & a & 0\end{array}\right|^{2}\)

    Solution

    Given determinant is \(\left|\begin{array}{lll}0 & c & b \\ c & 0 & a \\ b & a & 0\end{array}\right|^{2}\), simplifying the determinant based on first row we get,

    \(=\left\{0 \times\left(0-a^{2}\right)-c \times(c \times 0-b \times a)+b(c \times a-b \times 0)\right\}^{2}\)

    \(=(a b c+a b c)^{2}\)

    \(=4 a^{2} b^{2} c^{2}\)

    So, the right answer is \(4 \mathrm{a}^{2} \mathrm{~b}^{2} \mathrm{c}^{2}\)

  • Question 7
    4 / -1

    What is the principal argument of \((-1-i \sqrt{3})\)? where \(i=\sqrt{ -1}\)

    Solution

    Let \(z=x+i y=(-1-i \sqrt{3})\)

    So, \(x=-1\) and \(y=-\sqrt{3}\)

    Here sign of \(x\) and \(y\) are negative so \(z\) lies in third quadrant.

    Now,

    Principal argument of \((-1-\mathrm{i} \sqrt{3})=-\pi+\tan ^{-1}\left|\frac{\mathrm{y}}{\mathrm{x}}\right|\)

    \(=-\pi+\tan ^{-1}\left|\frac{\sqrt{3}}{1}\right| \)

    \(=-\pi+\frac{\pi}{3} \)

    \(=-\frac{2 \pi}{3}\)

  • Question 8
    4 / -1

    Find the middle terms in the expansion of \(\left(2 x +\frac{1}{ x }\right)^{5}\).

    Solution

    As we know,

    General term in the expansion of \((x+y)^{n}\) is given by,

    \(T _{( r +1)}={ }^{ n } C _{ r } \times x ^{ n - r } \times y ^{ r }\)

    The middle term is the expansion of \((x+y)^{n}\) depends upon the value of \(n\).

    If \(n\) is even, then total number of terms in the expansion of \((x+y)^{n}\) is \(n+1\).

    So there is only one middle term i.e., \(\left(\frac{n}{2}+1\right)\)th term.

    If \(n\) is odd, then total number of terms in the expansion of \(( x + y )^{ n }\) is \(n +1\).

    So there are two middle terms i.e., \(\left(\frac{ n +1}{2}\right)^{\text {th }}\) and \(\left(\frac{ n +3}{2}\right)^{\text {th }}\).

    Here \(n=5\) ( \(n\) is odd number)

    \(\therefore\) Middle term \(=\left(\frac{ n +1}{2}\right)^{\text {th }}\) and \(\left(\frac{ n +3}{2}\right)^{\text {th }}=3^{\text {rd }}\) and \(4^{\text {th }}\)

    \(\therefore T _{3}= T _{(2+1)}={ }^{5} C _{2} \times(2 x )^{(5-2)} \times\left(\frac{1}{ x }\right)^{2}\) and \(T _{4}= T _{(3+1)}={ }^{5} C _{3} \times(2 x )^{(5-3)} \times\left(\frac{1}{ x }\right)^{3}\)

    \(\Rightarrow T _{3}={ }^{5} C _{2} \times\left(2^{3} x \right)\) and \(T _{4}={ }^{5} C _{3} \times 2^{2} \times \frac{1}{ x }\)

    \(\Rightarrow T _{3}=80 x\) and \(T _{4}=\frac{40}{ x }\)

    So, the middle terms in the expansion of \(\left(2 x +\frac{1}{ x }\right)^{5}\) are \(80 x\) and \(\frac{40}{x}\).

  • Question 9
    4 / -1

    In figure, \(O\) is the centre of the circle. If \(\angle \mathrm{APB}=50^{\circ}\), find \(\angle \mathrm{AOB}\) and \(\angle \mathrm{OAB}\).

    Solution

    \(\angle \mathrm{APB}=50^{\circ}\) (Given)

    By degree measure theorem: \(\angle A O B=2 \angle A P B\)

    \(\angle \mathrm{AOB}=2 \times 50^{\circ}=100^{\circ}\)

    Again, \(\mathrm{OA}=\mathrm{OB}\) [Radius of circle]

    Then \(\angle O A B=\angle O B A\) [Angles opposite to equal sides]

    Let \(\angle O A B=m\)

    In \(\triangle O {A B}\)

    By angle sum property: \(\angle O A B+\angle O B A+\angle A O B=180^{\circ}\)

    \(\Rightarrow m+m+100^{0}=180^{\circ}\)

    \(\Rightarrow2 \mathrm{~m}=180^{\circ}-100^{\circ}=80^{\circ}\)

    \(\Rightarrow \mathrm{m}=\frac{80^{\circ}}{2}=40^{\circ}\)

    \(\angle O A B=\angle O B A=40^{\circ}\)

  • Question 10
    4 / -1

    Find the equation of the circle whose end points of the diameter are (- 3, 5) and (5, 3).

    Solution
    Let us suppose \(\left(x_{1}, y_{1}\right)\) and \(\left(x_{2}, y_{2}\right)\) be the end points of the diameter of a circle.
    Then the equation of such a circle is given by,
    \(\left(x-x_{1}\right) \cdot\left(x-x_{2}\right)+\left(y-y_{1}\right)\) \(\left( y - y _{2}\right)=0\)
    Given,
    The points \((-3,5)\) and \((5,3)\) are the endpoints of the diameter of the circle.
    Here, we have to find the equation of the circle whose end points of the diameter are \((-3,5)\) and \((5,3)\).
    As we know that,
    If \(\left(x_{1}, y_{1}\right)\) and \(\left(x_{2}, y_{2}\right)\) be the end points of the diameter of a circle.
    Then the equation of such a circle is given by,
    \(\left(x-x_{1}\right) \cdot\left(x-x_{2}\right)+(y-\) \(\left.y_{1}\right)\left(y-y_{2}\right)=0\)
    Here, \(x_{1}=-3, y_{1}=5, x_{2}=5\) and \(y_{2}=3\)
    So, the equation of the required circle is given by:
    \((x+3) \times(x-5)+(y-5) \times(y-3)=0\)
    \(\Rightarrow x^{2}-5 x+3 x-15+y^{2}-3 y-5 y+15=0 \)
    \(\Rightarrow x^{2}-2 x-15+y^{2}-8 y+15=0 \)
    \(\Rightarrow x^{2}+y^{2}-2 x-8 y=0\)
    So, the equation of the circle is \(x^{2}+y^{2}-2 x-8 y=0\).
     
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now