Self Studies

Mathematics Test-4

Result Self Studies

Mathematics Test-4
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    4 / -1

    Find the sum of the series 1 + 4 + 9 +16 + 25 + 36 +......+ 121.

    Solution

    Given,

    1 + 4 + 9 +16 + 25 + 36 +......+ 121

    The given series can be re-written as,

    \(1^{2}+2^{2}+3^{2}+\ldots \ldots+11^{2}\)

    As we know that,

    \(1^{2}+2^{2}+3^{2}+\ldots . .+n^{2}=\frac{n(n+1)(2 n+1)}{6}\)

    Here, n = 11

    \(1^{2}+2^{2}+3^{2}+\ldots . .+11^{2}\)

    \(=\frac{11 \times 12 \times 23}{6}\)

    \(=506\)

  • Question 2
    4 / -1

    Find the general solution of the differential equation:

    \(\frac{y^{2}}{x^{2}}=\frac{d y}{d x}\)
    Solution

    Given,

    \(\frac{y^{2}}{x^{2}}=\frac{d y}{d x}\)

    Separate the variables,

    \(\frac{d x}{x^{2}}=\frac{d y}{y^{2}}\)

    On integrating both side,

    We get,

    \(\int \frac{d x}{x^{2}}=\int \frac{d y}{y^{2}} \quad\left(\because \int \frac{1}{x^{2}} d x=\frac{-1}{x}\right)\)

    \(\Rightarrow-\frac{1}{x}+C=-\frac{1}{y}\)

    \(\Rightarrow \frac{1}{y}=\frac{1}{x}+C\)

  • Question 3
    4 / -1

    What is the angle between the below given lines?

    \(\overrightarrow{\mathbf{r}}=3 \hat{\mathbf{i}}+\hat{\mathbf{j}}-2 \hat{\mathbf{k}}+\lambda(\hat{\mathbf{i}} - \hat{\mathbf{j}}-2 \hat{\mathbf{k}})\) and \(\overrightarrow{\mathbf{r}}=3 \hat{\mathbf{i}}-\hat{\mathbf{j}}-56 \hat{\mathbf{k}}+\mu(3 \hat{\mathbf{i}}-5 \hat{\mathbf{j}}-4 \hat{\mathbf{k}})\)

    Solution

    As given,

    \(\overrightarrow{\mathrm{b}}_1=\hat{\mathrm{i}} -\hat{\mathrm{j}}-2 \hat{\mathrm{k}}\) and \(\overrightarrow{\mathrm{b}}_2=3 \hat{\mathrm{i}}-5 \hat{\mathrm{j}}+-4 \hat{\mathrm{k}}\), we get

    \(\left|\overrightarrow{\mathrm{b}}_1\right|=\sqrt{1^2+(-1)^2+(-2)^2}=\sqrt{6},\left|\overrightarrow{\mathrm{b}}_2\right|=\sqrt{3^2+(-5)^2+(-2)^2}=5 \sqrt{2}\) and

    \(\overrightarrow{\mathrm{b}}_1 \overrightarrow{\mathrm{b}}_2=(\hat{\mathrm{i}} -\hat{\mathrm{j}}-2 \hat{\mathrm{k}})(3 \hat{\mathrm{i}}-5 \hat{\mathrm{j}}+-4 \hat{\mathrm{k}})=16\)

    As we know,

    \(\cos \theta=\left|\frac{\overrightarrow{\mathrm{b}}_1 \overrightarrow{\mathrm{b}}_2}{\left|\overrightarrow{\mathrm{b}_1}\right|\left|\overrightarrow{\mathrm{b}}_2\right|}\right|\)

    \(\cos \theta=\frac{16}{10 \sqrt{3}}\)

    \(\Rightarrow \cos \theta=\frac{8}{5 \sqrt{3}}\)

    \(\Rightarrow \theta=\cos ^{-1} \frac{8}{5 \sqrt{3}}\)

  • Question 4
    4 / -1

    \(ABCD\) is a quadrilateral, \(E\) is the point of intersection of the line joining the midpoints of the opposite sides. If \(O\) is any point and \(\overrightarrow{ OA }+\overrightarrow{ OB }+\overrightarrow{ OC }+\) \(\overrightarrow{ OD }=x \overrightarrow{O E}\), then \(x\) is equal to:

    Solution

     

    Let \(\overrightarrow{O A}=\vec{a}, \overrightarrow{O B}=\vec{b}, \overrightarrow{O C}=\vec{c}\) and \(\overrightarrow{O D}=\vec{d}\).

     

    Therefore,

    \(\overrightarrow{ OA }+\overrightarrow{ OB }+\overrightarrow{ OC }+\overrightarrow{ OD }=\overrightarrow{ a }+\overrightarrow{ b }+\overrightarrow{ c }+\overrightarrow{ d }\)

    The midpoint \(P\) of \(A B\), is \(\frac{\vec{a}+\vec{b}}{2}\).

    The position vector of the midpoint \(Q\) of \(C D\), is \(\frac{\vec{c}+\vec{d}}{2}\).

    Therefore, the position vector of the midpoint of \(P Q\) is \(\frac{\vec{a}+\vec{b}+\vec{c}+\vec{d}}{4}\)

    Similarly, the position vector of the midpoint of RS is \(\frac{\vec{a}+\vec{b}+\vec{c}+\vec{d}}{4}\),

    i.e., \(\overrightarrow{O E}=\frac{\vec{a}+\vec{b}+\vec{c}+\vec{d}}{4}\)

    \(x=4\)

  • Question 5
    4 / -1

    If \(R=\left\{(x, y): x, y \in Z, x^{2}+3 y^{2} \leq 8\right\}\) is a relation on the set of integers \(Z\), then the domain \(R^{-1}\) is:

    Solution

    Given:

    Relation \(\mathrm{R}\) is defined on the set \(\mathrm{Z}\).

    \(R=\left\{(x, y): x, y \in Z, x^{2}+y^{2} \leq 4\right\}\)

    \(x^{2}+3 y^{2} \leq 8\)

    \(\Rightarrow \frac{x^{2}}{8}+\frac{y^{2}}{\frac{8}{3}} \leq 1\)

    \( \frac{x^{2}}{a^{3}}+\frac{y^{2}}{y^3} \leq 1\) is the equation of ellipse.

    So,

    \(=\{(-2,0),(-1,0),(0,0),(1,0),(2,0),(0,-2),(0,-1),(0,1),(0,2),(1,1),(-1,-1),(1,-1),(-1,1)\}\)

    Now we know,

    Domain is the set which consist all first elements of ordered pairs in relation \(R\).

    So,

    Domain \((R)=\{-2,-1,0,1,2\}\)

    Domain of \(R ^{-1} \equiv\) Range of \(R \equiv\) Value of \(y \equiv\{-1,0,1\}\)

  • Question 6
    4 / -1

    Find the root of equation x2 + kx + 2 = 0 where, k is the arithmetic mean of root of equation x2 + 6x + 8 = 0. 

    Solution

    Let, \(\alpha\) and \(\beta\) are the roots of \(x^{2}+6 x+8=0\), then

    Sum of root \(= \alpha+\beta=-6\)

    Arithmetic mean of root of equation \(=\frac{\alpha+\beta}{2}\) \(=\frac{-6}{2}\) \(=-3 \)

    According to question, arithmetic mean is \(k\).

    So, \(k=-3\)

    Therefore, equation \(x^{2}+k x+2=0\) becomes

    \(x^{2}-3 x+2=0 \) \(\Rightarrow(x-2)(x-1)=0 \)

    \(\Rightarrow x=2\) and \(x=1\)

    So, required roots of equation are \(1, 2\).

  • Question 7
    4 / -1

    If \(e^{\theta \phi}=c+4 \theta \phi,\) where \(c\) is an arbitrary constant and \(\phi\) is a function of \(\theta,\) then what is \(\phi \mathrm{d} \theta\) equal to?

    Solution

    Given, \(e^{\theta \phi}=c+4 \theta \phi\), where \(c\) is an arbitrary constant and \(\phi\) is a function of \(\theta\)

    Differentiate w.r.to \(\theta,\) we get

    \(\Rightarrow \frac{\mathrm{d}}{\mathrm{d} \theta}\left(\mathrm{e}^{\theta \phi}\right)=\frac{\mathrm{d}}{\mathrm{d} \theta}(\mathrm{c}+4 \theta \phi)\)

    \(\Rightarrow \mathrm{e}^{\theta \phi}\left(\theta \frac{\mathrm{d} \phi}{\mathrm{d} \theta}+\phi\right)=4\left(\theta \frac{\mathrm{d} \phi}{\mathrm{d} \theta}+\phi\right)\)

    \(\Rightarrow\left(e^{\theta \phi}-4\right)\left(\theta \frac{\mathrm{d} \phi}{\mathrm{d} \theta}+\phi\right)=0\)

    \(\Rightarrow\left(\theta \frac{\mathrm{d} \phi}{\mathrm{d} \theta}+\phi\right)=0\)

    \(\Rightarrow \theta \mathrm{d} \phi+\phi \mathrm{d} \theta=0\)

    \(\therefore \phi d \theta=-\theta \mathrm{d} \phi\)

  • Question 8
    4 / -1

    Let \(f: \mathbf{R} \rightarrow \mathbf{R}\) be defined as \(f(x)=x^{4}\). Choose the correct answer.

    Solution

    \(f: \mathrm{R} \rightarrow \mathrm{R}\) is defincd as \(f(x)=x^{4}\).

    Let \(x, y \in \mathrm{R}\) such that \(f(x)=f(y)\).

    \(\Rightarrow x^{4}=y^{4}\)

    \(\Rightarrow x=\pm y\)

    \(\therefore f(x)=f(y)\) does not imply that \(x=y\).

    For example \(f(1)=f(-1)=1\)

    \(\therefore f\) is not one-one.

    Consider an element 2 in co-domain \(\mathrm{R}\). It is clear that there does not exist any \(x\) in domain \(\mathrm{R}\) such that \(f(x)=2\).

    \(\therefore f\) is not onto.

    Thus, function \(f\) is neither one \(-\) one nor onto.

  • Question 9
    4 / -1
    General solution of differential equation \(\frac{d y}{d x}+y=1,(y \neq 1)\), is:
    Solution

    Given,

    \(\frac{d y}{d x}+y=1\)

    On seprating the variables

    We get,

    \(\frac{d y}{1-y}=d x\)

    On integrating,

    We get,

    \(\int \frac{d y}{1-y}=\int d x\)

    \(\Rightarrow-\log (1-y)=x+C\)

    \(\Rightarrow \log (1-y)^{-1}=x+C \quad\left[m \log n=\log n^{m}\right]\)

    \(\Rightarrow \log \left|\frac{1}{1-y}\right|=x+C\)

  • Question 10
    4 / -1

    How many ways 6 rings can be worn in 4 fingers such that no fingers are without ring?

    Solution

    Since there are 6 rings and 4 fingers

    Then 1stfinger can have any 6 rings, hence 6 ways

    2ndfinger can have theremaining 5rings, hence 5ways

    3rdfinger can have theremaining 4rings, hence 4ways

    4thfinger can have theremaining 3rings, hence 3ways

    So, the total number of ways = 6× 5× 4× 3

    = 360

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now