Self Studies

Mathematics Test-5

Result Self Studies

Mathematics Test-5
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    4 / -1

    Let \(\alpha\) and \(\beta\) are the lengths of the perpendiculars from the points \((2,3,-5)\) and \((3,1,1)\) respectively from the plane \(x+2 y-2 z-9=0\), then \(\alpha\) and \(\beta\) are the roots of which equation?

    Solution

    Perpendicular Distance of a Point from a Plane

    Let us consider a plane given by the Cartesian equation,

    \(Ax+By+Cz=d\) and a point whose coordinate is,

    \(\left(x_1, y_1, z_1\right)\).

    Then the distance between the point and the plane is given by:

    \(\left|\frac{A x_1+B y_1+C z_1-d}{\sqrt{A^2+B^2+C^2}}\right|\)

    Quadratic equation with roots \(\alpha\) and \(\beta\) :

    Quadratic equation with roots \(\alpha\) and \(\beta\) is given by:

    \((x-\alpha)(x-\beta)=0\)

    We know that the distance between the point and the plane is given by

    \(\left|\frac{A x_1+B y_1+C z_1-d}{\sqrt{A^2+B^2+C^2}}\right|\)

    So, the distance of the point \((2,3,-5)\) from the given plane

    \(\alpha=\left|\frac{2 \times 1+2 \times 3+(-2) \times(-5)-9}{\sqrt{1^2+(-2)^2+(2)^2}}\right|=3\)

    Similarly, the distance of the point \((3,1,1)\) from the given plane

    \(\beta=\left|\frac{3 \times 1+2 \times 1+(-2) \times 1-9}{\sqrt{1^2+(-2)^2+(2)^2}}\right|=2\)

    Therefore, quadratic equation with roots 3 & 2 will be

    \((x-2)(x-3)=0\)

    \(\Rightarrow x^2-3 x-2 x+6=0\)

    \(\Rightarrow x^2-5 x+6=0\)

  • Question 2
    4 / -1

    The total number of symmetric relation that can be defined on the set \(1,2,3,4,5,6,7\) is:

    Solution

    We know that the total number of symmetric relation in a set is given by \(2^{\frac{n(n+1)}{2}}\)where \(n\) is the number ofelements in the set.

    So, let us put this formula and in place of \(n\) we will put 7 as there are a total of 7 elements in the given set.

    \(\therefore 2^{\frac{n(n+1)}{2}}\)

    \(=2^{\frac{7(7+1)}{2}}\)

    \(=2^{\frac{7 \times 8}{2}}\)

    \(=2^{7 \times 4}\)

    \(=2^{28}\)

  • Question 3
    4 / -1

    \(A=\left[\begin{array}{cc}x & -7 \\ 7 & y\end{array}\right]\) is a skew-symmetric matrix, then \((x, y)=?\)

    Solution

    \(A=\left[\begin{array}{cc}x & -7 \\ 7 & y\end{array}\right]\)

    \(\operatorname{Now} A^T=\left[\begin{array}{cc}x & 7 \\ -7 & y\end{array}\right]\)

    Now for \(A\) to be skew symmetric matrix, \(A+A^T=0\)

    \(\Rightarrow\left[\begin{array}{cc} x & -7 \\ 7 & y \end{array}\right]+\left[\begin{array}{cc} x & 7 \\ -7 & y \end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]\)

    \(\Rightarrow\left[\begin{array}{cc}2 x & 0 \\ 0 & 2 y \end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]\)

    Now equating the corresponding elements we get, \(( x , y )=(0,0)\)

  • Question 4
    4 / -1

    If \(\omega\) is a complex cube root of unit, then \(1+\omega+\omega^{2}+\ldots+\omega^{100}\) is equal to:

    Solution

    Sum of Gp series of nth terms:

    \(S_{n}=\frac{a \times\left(r^{n}-1\right)}{r-1}\)

    Where,

    a: First Term

    r: common ratio

    If \(\omega\) is a complex root of the unit. Then,

    \(\omega^{3}=1\)

    According to question

    \(1+\omega+\omega^{2}+\ldots+\omega^{100}\)

    We know that,

    \(\omega^{3}=1\)

    so, \(\left(\omega^{3}\right)^{33}=(1)^{33}\)

    \(\omega^{99}=1\)

    Now, Solving GP:

    \(=\frac{1 \times\left(\omega^{101}-1\right)}{\omega-1}\)

    \(=\frac{\omega^{99}\left(\omega^{2}-1\right)}{\omega-1}\)

    \(=\frac{\omega^{99}(\omega-1)(\omega+1)}{\omega-1}\)

    \(=\omega+1\)

  • Question 5
    4 / -1

    A bag contains \(5\) red balls and some blue balls .If the probability of drawing a blue ball is double that of a red ball, then the number of blue balls in a bag is:

    Solution

    Let the number of blue balls be \(x\).

    Then total number of balls will be \(5+x\).

    Probability \(= \frac{Number\ of\ favourable\ outcomes}{Total\ number\ of\ outcomes}\)

    now,

    the probability of drawing a blue ball is double that of a red ball, then the number of blue balls in a bag is:

    Probability of drawing a blue ball \(= \frac{x}{5+x}\)

    Probability of drawing a red ball \(= \frac{5}{5+x}\)

    as given in question,

    \(\Rightarrow\)\(\frac{x}{(5+x)}\) \(=2 \times (\frac{5}{5+x}) \)

    \(\Rightarrow\) \( x =\) \( 2 \times5\)

    \(\Rightarrow x=10\)

  • Question 6
    4 / -1

    Find the value of \(a, b, c\) and d if: \(\left[\begin{array}{cc}a-b & 2 a+c \\ 2 a-b & 3 c+d\end{array}\right]=\left[\begin{array}{cc}-1 & 5 \\ 0 & 13\end{array}\right]\)

    Solution

    Concept:

    Two matrices \(A\) and \(B\) are said to be equal if:

    - They are of same order

    - The corresponding elements of the matrices are same.

    Calculation:

    Comparing the corresponding elements:

    \(M_{11}: a-b=-1 \Rightarrow b=a+1 \)

    \(M_{21}: 2 a-b=0 \Rightarrow b=2 a \)

    \(\Rightarrow 2 a=a+1 \Rightarrow a=1, b=2 \)

    \(M_{12}: 2 a+c=5 \Rightarrow 2 \times 1+c=5 \Rightarrow c=3 \)

    \(M_{22}: 3 c+d=13 \Rightarrow 3 \times 3+d=13 \Rightarrow d=4 \)

    \(\therefore a=1, b=1, c=3, d=4\)

  • Question 7
    4 / -1

    If \(\theta\) is an acute angle such that \(\tan ^2 \theta=\frac{8}{7}\), then the value of \(\frac{(1+\sin \theta)(1-\sin \theta)}{(1+\cos \theta)(1-\cos \theta)}\) is:

    Solution

    \(\tan ^2 \theta=\frac{8}{7}\)

    \(\Rightarrow \tan \theta=\frac{\sqrt{8}}{\sqrt{7}}=\frac{2 \sqrt{2}}{\sqrt{7}}\)\(=\frac{\text { Perpendicular }}{\text { Base }}\)

    By Pythagoras Theorem,

    \((\text {Hypotenuse})^2=(\text {Base})^2+(\text { Perpendicular})^2 \)

    \(=(\sqrt{7})^2+(2 \sqrt{2})^2=7+8=15 \)

    \(\therefore \text { Hypotenuse}=\sqrt{15}\)

    \(\therefore\sin \theta=\frac{\text { Perpendicular }}{\text { Hypotenuse }}=\frac{2 \sqrt{2}}{\sqrt{15}} \)

    \( \cos \theta=\frac{\text { Base }}{\text { Hypotenuse }}=\frac{\sqrt{7}}{\sqrt{15}}\)

    \(=\frac{1-\sin ^2 \theta}{1-\cos ^2 \theta}=\frac{1-\left(\frac{2 \sqrt{2}}{\sqrt{15}}\right)^2}{1-\left(\frac{\sqrt{7}}{\sqrt{15}}\right)^2}\)

    \(=\frac{1-\frac{8}{15}}{1-\frac{7}{15}}=\frac{\frac{15-8}{15}}{\frac{15-7}{15}}=\frac{\frac{7}{15}}{\frac{8}{15}}\)

    \(=\frac{7}{15} \times \frac{15}{8}=\frac{7}{8}\)

  • Question 8
    4 / -1
    Find the complex number z satisfying the equations \(\left|\frac{z-12}{z-8 i}\right|=\frac{5}{3},\left|\frac{z-4}{z-8}\right|=1\)
    Solution
    \(\left|\frac{z-12}{x-8 i}\right|=\frac{5}{3},\left|\frac{z-4}{x-8}\right|=1\)
    Let \(z=x+i y,\) then \(\left|\frac{z-12}{z-8 i}\right|=\frac{5}{3}\)
    \(\Rightarrow 3|z-12|=5|z-8 i|\)
    \(3|(x-12)+i y|=5 \mid x+(y-8) i|\)
    \(9(x-12)^{2}+9 y^{2}=25 x^{2}+25(y-8)^{2}\) ....(i)
    and\(\left|\frac{z-4}{x-8}\right|=1\)
    \(\Rightarrow|z-4|=|z-8|\)
    \(|x-4+i y|=|x-8+i y|\)
    \((x-4)^{2}+y^{2}=(x-8)^{2}+y^{2}\)\(\Rightarrow x=6\)
    Putting \(x=6\) in (i), we get \(y^{2}-25 y+136=0\)
    \(y=17,8\)
    So, \(z=6+17 i\) or \(z=6+8 i\)
  • Question 9
    4 / -1
    Find the angle between unit vectors \(a\) and \(b\) so that \(\sqrt{3} \vec{a}-b\) is also a unit vector.
    Solution

    Let angle between \(a\) and \(b\) is \(\theta\).

    \(\vec{a} \cdot \vec{b}=|\vec{a}| \cdot|\vec{b}| \cdot \cos \theta\) (Dot product of two vectors)

    \(\vec{a} \cdot \vec{b}=\cos \theta\)

    As \(\vec{ a }\) and \(\vec{ b }\) are unit vector so, \(|\vec{ a }|=|\vec{ b }|=1\).

    \(\sqrt{3} \vec{a} - b\) is also unit vector i.e. \(|\sqrt{3} \vec{a}-\vec{b}|=1\)

    Squaring both sides, we get,

    \((\sqrt{3} \vec{a}-\vec{b})^{2}=1\)

    \((\sqrt{3})^{2}|\vec{a}|^{2}+|\vec{b}|^{2}-2 \cdot \sqrt{3} \cdot|\vec{a} \cdot \vec{b}|=1 \)

    \(\Rightarrow 3 \cdot 1+1-2 \cdot \sqrt{3} \cdot \cos \theta=1 \)

    [Since, \(\vec{a} \cdot \vec{b}=\cos \theta \)]

    \(\Rightarrow 4-2 \sqrt{3} \cdot \cos \theta=1 \)

    \(\Rightarrow 2 \sqrt{3} \cdot \cos \theta=3 \)

    \(\Rightarrow \cos \theta=\frac{\sqrt{3}}{2} \)

    \(\Rightarrow \theta=\frac{\pi}{6}\)

    Therefore, the angle between the two unit vectors is \(\frac{\pi}{6}\).

  • Question 10
    4 / -1

    Coefficient of \(x^{48}\) in \(\sum_{r=0}^{50}\left({ }^{50} C_{r}\right)(x-2)^{r} 3^{50-r}\):

    Solution

    Given,

    \(\sum_{r=0}^{50}\left({ }^{50} C_{r}\right)\left(3^{50-r}\right)(x-2)^{r}\)

    \(⇒ (3+(x-2))^{50}\)

    \(⇒ (x+1)^{50}\)

    Coefficient of \(x^{48}\) in \((1+x)^{50}\) is

    \({ }^{50} C_{48}={ }^{50} C_{2}\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now