Self Studies

Mathematics Test-6

Result Self Studies

Mathematics Test-6
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    4 / -1

    If \(p(x)=(4 e)^{2 x}\), then what is \(\int p(x) d x\) equal to?

    Solution

    Given: \(p(x)=(4 e)^{2 x}\)

    Let \(I=\int \mathrm{p}(\mathrm{x}) \mathrm{dx}\)

    \(=\int(4 e)^{2 x} d x\)

    Let \(2 x=t\)

    Differentiating with respect to \(\mathrm{x},\) we get

    \(\Rightarrow 2 \mathrm{dx}=\mathrm{dt}\)

    \(\Rightarrow d x=\frac{d t}{2}\)

    Now,

    \(\int \mathrm{p}(\mathrm{x}) \mathrm{dx}\)

    \(=\frac{1}{2} \int(4 \mathrm{e})^{\mathrm{t}} \mathrm{dt}\)

    \(=\frac{1}{2} \frac{(4 e)^{t}}{\ln 4 \mathrm{e}}+\mathrm{c}\)

    \(=\frac{1}{2} \frac{(4 \mathrm{e})^{t}}{(\ln 4+\ln \mathrm{e})}+\mathrm{c} \quad(\because \log \mathrm{mn}=\log \mathrm{m}+\log \mathrm{n})\)

    \(=\frac{1}{2} \frac{(4 \mathrm{e})^{t}}{(1+2 \ln 2)}+\mathrm{c}\)

  • Question 2
    4 / -1

    If \(S =\left[\begin{array}{cc}6 & -8 \\ 2 & 10\end{array}\right]= P + Q\), where \(P\) is a symmetric & \(Q\) is a skew \(-\) symmetric matrix, then the value of \(Q\) is:

    Solution

    Any square matrix can be expressed as sum of symmetric and skew-symmetric as

    \(A=\frac{1}{2}\left(A+A^T\right)+\frac{1}{2}\left(A-A^T\right)\)

    Where the first term is symmetric and second term is skew-symmetric Here \(S = P + Q\)

    To find Q i.e. the skew-symmetric matrix is given by,

    \(Q=\frac{1}{2}\left(S-S^T\right)\)

    \(Q =\frac{1}{2}\left(\left[\begin{array}{cc}6 & -8 \\ 2 & 10\end{array}\right]-\left[\begin{array}{cc}6 & 2 \\ -8 & 10\end{array}\right]\right)\)

    \(Q =\frac{1}{2}\left[\begin{array}{cc}0 & -10 \\ 10 & 0\end{array}\right]\)

    \(Q=\left[\begin{array}{cc}0 & -5 \\ 5 & 0\end{array}\right]\)

  • Question 3
    4 / -1

    A determinant (Δ) of 3 rows (R1, R2, R3) and 3 columns (C1, C2, C3) has a value Δ = 15. If two columns C2 and C3 of determinant (Δ) are interchanged, then the value of determinant will be

    Solution

    Concept:

    Properties of Determinants:

    1) The value of the determinant remains unchanged if both rows and columns are interchanged.

    2) If any two rows (or columns) of a determinant are interchanged, then sign of determinant changes.

    3) If any two rows (or columns) of a determinant are identical (all corresponding elements are same), then the value of the determinant is zero.

    4) If some or all elements of a row or column of a determinant are expressed as the sum of two (or more) terms, then the determinant can be expressed as the sum of two (or more) determinants.

    5) det (AT) = det (A)

    6) det (kA) = kndet(A)

    7) det(A.B) = det(A).det(B)

    Explanation:

    Given,

    Determinant (Δ) = 15

    Two columns C2 and C3 of determinant (Δ) are interchanged

    From the properties of the determinants:

    If any two rows (or columns) of a determinant are interchanged, then sign of determinant changes.

    Hence the value of determinant will be Δ = -15

  • Question 4
    4 / -1

    If \(3 \cos \theta=5 \sin \theta\), then the value of \(\frac{5 \sin \theta-2 \sec ^3 \theta+2 \cos \theta}{5 \sin \theta+2 \sec ^3 \theta-2 \cos \theta}\) is:

    Solution

    \(3 \cos \theta=5 \sin \theta \Rightarrow \frac{\sin \theta}{\cos \theta}=\frac{3}{5}\) \(\Rightarrow \tan \theta=\frac{3}{5}=\frac{\text { Altitude }}{\text { Base }}\)

    By Pythagoras Theorem,

    \((\text { Hypotenuse})^2=(\text { Base })^2+(\text {Altitude})^2\)

    \(\quad\quad\quad\quad\quad\quad\quad=(5)^2\quad+\quad\quad(3)^2\quad\quad\)

    \(\quad \quad \quad \quad \quad\quad\quad =25+9=34\)

    \(\therefore\) Hyp. \(=\sqrt{34}\)

    Now \(\sin \theta=\frac{\text { Altitude }}{\text { Hypotenuse }}=\frac{3}{\sqrt{34}}\)

    \(\cos \theta=\frac{\text { Base }}{\text { Hypotenuse }}=\frac{5}{\sqrt{34}}\)

    \(\sec \theta=\frac{1}{\cos \theta}=\frac{\sqrt{34}}{5}\)

    Now, \(\frac{5 \sin \theta-2 \sec ^3 \theta+2 \cos \theta}{5 \sin \theta+2 \sec ^3 \theta-2 \cos \theta}\)

    \(=\frac{3 \cos \theta+2 \cos \theta-\frac{2}{\cos ^3 \theta}}{3 \cos \theta-2 \cos \theta+\frac{2}{\cos ^3 \theta}}\)

    \(=\frac{5 \cos \theta-\frac{2}{\cos ^3 \theta}}{\cos \theta+\frac{2}{\cos ^3 \theta}} \quad\{3 \cos \theta=5 \sin \theta\}\)

    \(=\frac{\frac{5 \cos ^4 \theta-2}{\cos ^3}}{\frac{\cos ^4 \theta+2}{\cos ^3 \theta}}=\frac{5 \cos ^4 \theta-2}{\cos ^3 \theta} \times \frac{\cos ^3 \theta}{\cos ^4 \theta+2}\)

    \(=\frac{5 \cos ^4 \theta-2}{\cos ^4 \theta+2}\)

    \(=\frac{5\left(\frac{5}{\sqrt{34}}\right)^4-2}{\left(\frac{5}{\sqrt{34}}\right)^4+2}=\frac{\frac{5 \times 625}{1156}-2}{\frac{625}{1156}+2}\)

    \(=\frac{\frac{3125-2372}{625+2312}}{\frac{1156}{156}}\)

    \(=\frac{813}{1156} \times \frac{1156}{2937}=\frac{271}{979}\)

  • Question 5
    4 / -1
    Find a vector \(r\) equally inclined to the three axes and whose magnitude is \(3 \sqrt{3}\) units.
    Solution

    We have \(|\vec{r}|=3 \sqrt{3}\)

    Since, \(\vec{r}\) is equally inclined to the three axes, direction cosines of the unit vector \(\vec{r}\) will be same.

    i.e., \(l=m=n\)

    Now, we know that,

    \(l^{2}+ m ^{2}+ n ^{2}=1 \)

    \(\Rightarrow l^{2}+l^{2}+l^{2}=1 \)

    \(\Rightarrow 3l^{2}=1 \)

    \(\Rightarrow l^{2}=\frac{1}{3} \)

    \(\Rightarrow l=\pm \frac{1}{\sqrt{3}} \)

    So, \(\hat{ r }=\pm \frac{1}{\sqrt{3}} \hat{ i } \pm \frac{1}{\sqrt{3}} \hat{ j } \pm \frac{1}{\sqrt{3}} \hat{ k } \)

    \(\therefore \vec{ r }=|\vec{ r }| \hat{ r } \)

    \(=2 \sqrt{3}\left[\pm \frac{1}{\sqrt{3}} \hat{ i } \pm \frac{1}{\sqrt{3}} \hat{ j } \pm \frac{1}{\sqrt{3}} \hat{ k }\right] \)

    \(=\pm 2[\hat{ i }+\hat{ j }+\hat{ k }]\)

  • Question 6
    4 / -1

    Integrating factor of the differential equation\(\left(1-x^2\right) \frac{d y}{d x}-x y=1\) is:

    Solution

    As we know,

    Form of a linear differential equation:

    \(\frac{d y}{d x}+P y=Q\), where \(P\) and \(Q\) are the functions of \(x\)

    Integrating factor \(=e^{\int P d x}\)

    General solution is given by:

    \(y \times e^{\int P d x}=\int Q \times e^{\int P d x} d x+C\)

    Given:

    Differential equation is \(\left(1-x^2\right) \frac{d y}{d x}-x y=1\)

    Divide by \(\left(1-x^2\right)\) on both sides, we get

    \(\Rightarrow \frac{{dy}}{{dx}}-\frac{{xy}}{\left(1-{x}^2\right)}=\frac{1}{\left(1-{x}^2\right)}\)

    Now, by comparing the above equation with \(\frac{{dy}}{{dx}}+{Py}={Q}\)

    So, \({P}=-\frac{{x}}{\left(1-{x}^2\right)}\)

    Now,

    Integrating factor \(={e}^{\int {P}} {dx}\)

    \( ={e}^{\int \frac{-{x}}{\left(1-{x}^2\right)} d {x}}\)

    \(={e}^{\frac{1}{2} \int \frac{-2 {x}}{\left(1-{x}^2\right)} d {x}}\)

    Let \(1-x^2=t\)

    Differentiating with respect to \(x\), we get

    \(\Rightarrow(0-2 {x}) {dx}={dt} \)

    \(\Rightarrow-2 {xdx}={dt}\)

    Integrating factor \(={e}^{\frac{1}{2} \int \frac{{dt}}{t}}\)

    \(={e}^{\frac{1}{2} \log \mathrm{t}}\)

    \(={e}^{\log t^{\frac{1}{2}}}\)

    \(={t}^{\frac{1}{2}}\)

    \(=\left(1-{x}^2\right)^{\frac{1}{2}}\)

    \(=\sqrt{1-{x}^2}\)

  • Question 7
    4 / -1

    \(\int \frac{1}{1+e^x} d x\) is equal to

    Solution

    \(\int \frac{1}{ x } dx =\log x + c\)

    Let \(I=\int \frac{1}{1+e^{ x }} dx =\int \frac{ e ^{- x }}{ e ^{- x }+1} dx\) Assume \(e^{-x}+1=t\)

    Differenatiang with respect to \(x\), we get

    \(\Rightarrow-e^{-x} d x=d t\)

    \(\therefore e^{-x} d x=-d t\)

    \(=\int \frac{- dt }{ t }=-\log t + c =-\log \left( e ^{- x }+1\right)+ c =\log \left(\frac{1}{ e ^{-x}+1}\right)+ c\)

    \( =\log \left(\frac{ e ^{ x }}{1+ e ^{ x }}\right)+ c\)

  • Question 8
    4 / -1

    On a chess board, in how many different ways can \(6\) consecutive squares be chosen on the diagonals along a straight path?

    Solution

    There are \(2\) diagonals with \(8\) squares each on the chess board and we have to choose \(6\) consecutive square.

    We will assume block of \(6\) consecutive squares as one.

    So, we are left with \(3\) places on the chess board where it can be arranged by selecting any one of the place out of three i. e., \({ }^{3} \mathrm{C}_{1}=3\).

    Similarly, for other diagonal too we will get \(3\) different ways

    So, in total we have \(6\) different ways of choosing \(6\) consecutive squares.

  • Question 9
    4 / -1

    Direction: In this question, two equations (I) and (II) are given. You have to solve both the equations and give an answer.

    I. 15x2 – 11x + 2 = 0

    II. 10y2 – 9y + 2 = 0

    Solution

    I. 15x2 – 11x + 2 = 0

    15x2 – 5x – 6x + 2 = 0

    5x (3x – 1) – 2 (3x – 1) = 0

    (3x – 1) (5x – 2) = 0

    x =13,25

    II. 10y2 – 9y + 2 = 0

    10y2 – 5y – 4y + 2 = 0

    5y (2y – 1) –2 (2y – 1) = 0

    (2y – 1) (5y – 2) = 0

    y =12,25

    Therefore,

    x ≤ y

  • Question 10
    4 / -1

    If x = 2 + 3 cos θ and y = 1 - 3 sin θ represent a circle then the centre and radius is:

    Solution

    As we know,

    The equation of a circle is given by:

    \(\left(x-h\right)^{2}+\left(y-k\right)^{2}=r^{2}\)

    Where \(\left( h , k \right)\) is the center of the circle and \(r\) is the radius.

    Given,

    \(x=2+3 \cos \theta \)

    \(\Rightarrow 3 \cos \theta=x-2 \)..(i)

    Also \( y=1-3 \sin \theta \)

    \(\Rightarrow 3 \sin \theta=-y+1 \)...(ii)

    Squaring adding (i) & (ii), we get

    \(\left( x -2\right)^{2}+\left(-( y -1)\right)^{2}=3^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)\)

    \(\Rightarrow( x -2)^{2}+\left(-( y -1)\right)^{2}=3^{2}\)

    Comparing it with standard equation of a circle, we get

    Centre \(=\left(h, k\right)=\left(2,1\right)\) and radius \(=3\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now