Given:
Distance between the free protons, \(r=1\) Å\(=1 \times 10^{-10} \mathrm{~m}\)
Initially kinectic energy of the proton is zero and electric potential energy is maximum.
At infinite separation, potential energy is zero and all the energy is converted into kinetic energy (using law of conservation of energy)
i.e., \(2 \mathrm{~K}=\mathrm{U}\)
Where, \(K\) is kinetic energy of each proton.
\(K=\frac{1}{2} U=\frac{1}{2} \frac{e^{2}}{4 \pi \epsilon_{0} \mathrm{I}}\).....(1)
Where,
\(e=1.6 \times 10^{-19} \mathrm{C}\) (charge on the proton)
\(\epsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}\) (permittivity of free space)
Put all the given values in (1)
\(K=\frac{1}{2} \times \frac{\left(1.6 \times 10^{-19} \mathrm{C}\right)^{2}}{\left(10^{-10} \mathrm{~m}\right)} \times \frac{1}{4 \pi \epsilon_{0}} \)
\(\text { Also, } \frac{1}{4 \pi \epsilon_{0}}=9 \times 10^{9} \mathrm{Nm}^{2} \mathrm{C}^{-2} \)
\(\Rightarrow K=\frac{1}{2} \times \frac{\left(1.6 \times 10^{-19} \mathrm{C}\right)^{2}}{\left(10^{-10} \mathrm{~m}\right)} \times 9 \times 10^{9} \mathrm{Nm}^{2} \mathrm{C}^{-2} \)
\(\Rightarrow K=11.5 \times 10^{-19} \mathrm{~J}\)