Option (C):
Tension (force) \(=\left[M L T^{-2}\right]\)
Surface tension \(=\frac{\text { force }}{\text { length }}\)
\(=\frac{\left[M L T^{-2}\right]}{[L]}=\left[M L^{0} T^{-2}\right]\)
Option (A):
Work \(=F \times \Delta x\)\(=\left[\mathrm{MLT}^{-2}[\mathrm{~L}]=\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]\right]\)
The dimension of distance, \(\Delta x = \left[M L T^{-2}\right]\)
\(=\left[M L T^{-2}\right][L]=\left[M L^{2} T^{-2}\right]\)
Torque = force \(\times\) distance
\(=\left[M L^{2} T^{-2}\right]\)
Option (B):
Angular momentum \(=m v r\)
\(=[M]\left[L T^{-1}\right][L]=\left[M L^{2} T^{-1}\right]\)
Planck's constant \(=\frac{E}{\nu}\)
\(=\frac{\left[M L^{2} T^{-2}\right]}{\left[T^{-1}\right]}=\left[M L^{2} T^{-1}\right]\)
Option (D):
Impulse \(=F \times \Delta t\)
\(=\left[M L T^{-2}\right][T]=\left[M L T^{-1}\right]\)
Linear momentum \(=\) mass \(\times\) velocity
\(=[M]\left[L T^{-1}\right]=\left[M L T^{-1}\right]\)
So, among the above pairs only tension and surface tension does not have same dimensional formula. They both sound similar but they both have different meaning and different applications.