Given: Initially force per unit length on the wires \(= f _{ ab }= f _{ ba }= f =10^{-3}\) N and \(d =2\) m
If two current carrying long wires \(A\) and \(B\) are separated by a very small distance and placed parallel to each other. Then the force per unit length on wire \(A\) and wire \(B\) is given as,
\(f_{a b}=f_{b a}=f=\frac{\mu_{o} I_{a} I_{b}}{2 \pi d}\)
Where, \(I _{ a }=\) current in the wire \(A , I _{ b }=\) current in the wire \(B\), and \(d =\) distance between the wires
If the current in both the wires is doubled,
\(I_{a}^{\prime}=2 I_{a}\)
\(\Rightarrow I_{b}^{\prime}=2 I_{b}\)
And the distance between the wires is halved, so,
\(d^{\prime}=\frac{d}{2}\)
So, when the current in both the wires is doubled and the distance between the wires is halved, the new force per unit length on wire A and wire B will be,
\(f_{a b}^{\prime}=f_{b a}^{\prime}=f^{\prime}=\frac{\mu_{o} I_{a}^{\prime} I_{b}^{\prime}}{2 \pi d^{\prime}}\)
\(\Rightarrow f^{\prime}=2 \times \frac{\mu_{o} \times 2 I_{a} \times 2 I_{b}}{2 \pi d}\)
\(\Rightarrow f^{\prime}=8 \times \frac{\mu_{o} I_{a} I_{b}}{2 \pi d}\)
\(\Rightarrow f ^{\prime}=8 f\)
\(\Rightarrow f ^{\prime}=8 \times 10^{-3}\) N