Self Studies

Waves Test - 18

Result Self Studies

Waves Test - 18
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    Attempt All sub parts from each question.

    Longitudinal and transverse wave: Longitudinal Waves are defined as waves those are capable of displacing the medium in a direction either in the direction of the waves or opposite. Longitudinal mechanical waves are known as compressional waves. This is because these mechanical waves produce a lot of compression and rarefaction while travelling through medium. These waves are also called as pressure waves as there is an increase and decrease in pressure while travelling. Sound Waves like vibrations, P-Waves created through earthquakes, etc., are some kinds of longitudinal waves. A transverse wave is defined as the wave that moves in the perpendicular direction of the vibration. One of the most important examples of transverse waves includes the waves created by the drum's beating. The membrane of the drum moves perpendicular to the surface. Another example of a transverse wave is light. Transverse waves travels through crests and troughs. Transverse waves are mostly present in solids those have profound elasticity. In some cases, when there is a deformation in the material, the wave is called a shear wave.

    Q. Which wave is also known as shear wave?

    Solution

    Transverse waves are mostly present in solids those have profound elasticity. In some cases, when there is a deformation in the material, the wave is called a shear wave.

  • Question 2
    1 / -0

    Attempt All sub parts from each question.

    Longitudinal and transverse wave: Longitudinal Waves are defined as waves those are capable of displacing the medium in a direction either in the direction of the waves or opposite. Longitudinal mechanical waves are known as compressional waves. This is because these mechanical waves produce a lot of compression and rarefaction while travelling through medium. These waves are also called as pressure waves as there is an increase and decrease in pressure while travelling. Sound Waves like vibrations, P-Waves created through earthquakes, etc., are some kinds of longitudinal waves. A transverse wave is defined as the wave that moves in the perpendicular direction of the vibration. One of the most important examples of transverse waves includes the waves created by the drum's beating. The membrane of the drum moves perpendicular to the surface. Another example of a transverse wave is light. Transverse waves travels through crests and troughs. Transverse waves are mostly present in solids those have profound elasticity. In some cases, when there is a deformation in the material, the wave is called a shear wave.

    Q. Which wave is also known as pressure wave?

    Solution

    Longitudinal wave are also called as pressure waves as there is an increase and decrease in pressure while traveling.

  • Question 3
    1 / -0

    Attempt All sub parts from each question.

    Longitudinal and transverse wave: Longitudinal Waves are defined as waves those are capable of displacing the medium in a direction either in the direction of the waves or opposite. Longitudinal mechanical waves are known as compressional waves. This is because these mechanical waves produce a lot of compression and rarefaction while travelling through medium. These waves are also called as pressure waves as there is an increase and decrease in pressure while travelling. Sound Waves like vibrations, P-Waves created through earthquakes, etc., are some kinds of longitudinal waves. A transverse wave is defined as the wave that moves in the perpendicular direction of the vibration. One of the most important examples of transverse waves includes the waves created by the drum's beating. The membrane of the drum moves perpendicular to the surface. Another example of a transverse wave is light. Transverse waves travels through crests and troughs. Transverse waves are mostly present in solids those have profound elasticity. In some cases, when there is a deformation in the material, the wave is called a shear wave.

    Q. Which wave produces compressions and rarefactions in the medium?

    Solution

    Longitudinal mechanical waves produce a lot of compression and rarefaction while travelling through medium. Hence they are also known as compressional waves.

  • Question 4
    1 / -0

    Attempt All sub parts from each question.

    Longitudinal and transverse wave: Longitudinal Waves are defined as waves those are capable of displacing the medium in a direction either in the direction of the waves or opposite. Longitudinal mechanical waves are known as compressional waves. This is because these mechanical waves produce a lot of compression and rarefaction while travelling through medium. These waves are also called as pressure waves as there is an increase and decrease in pressure while travelling. Sound Waves like vibrations, P-Waves created through earthquakes, etc., are some kinds of longitudinal waves. A transverse wave is defined as the wave that moves in the perpendicular direction of the vibration. One of the most important examples of transverse waves includes the waves created by the drum's beating. The membrane of the drum moves perpendicular to the surface. Another example of a transverse wave is light. Transverse waves travels through crests and troughs. Transverse waves are mostly present in solids those have profound elasticity. In some cases, when there is a deformation in the material, the wave is called a shear wave.

    Q. Beating of drums produces

    Solution

    One of the most important examples of transverse waves includes the waves created by the drum's beating. The membrane of the drum moves perpendicular to the surface.

  • Question 5
    1 / -0

    Attempt All sub parts from each question.

    Longitudinal and transverse wave: Longitudinal Waves are defined as waves those are capable of displacing the medium in a direction either in the direction of the waves or opposite. Longitudinal mechanical waves are known as compressional waves. This is because these mechanical waves produce a lot of compression and rarefaction while travelling through medium. These waves are also called as pressure waves as there is an increase and decrease in pressure while travelling. Sound Waves like vibrations, P-Waves created through earthquakes, etc., are some kinds of longitudinal waves. A transverse wave is defined as the wave that moves in the perpendicular direction of the vibration. One of the most important examples of transverse waves includes the waves created by the drum's beating. The membrane of the drum moves perpendicular to the surface. Another example of a transverse wave is light. Transverse waves travels through crests and troughs. Transverse waves are mostly present in solids those have profound elasticity. In some cases, when there is a deformation in the material, the wave is called a shear wave.

    Q. Which wave is also known as compressional wave?

    Solution

    Longitudinal mechanical waves are known as compressional waves. This is because these mechanical waves produce a lot of compression and rarefaction while travelling through medium.

  • Question 6
    1 / -0

    Attempt All sub parts from each question.

    Tuning a piano wire: When we hear two frequencies which are very close to each other but not exactly equal then distinct waxing and waning of the intensity of the sound is heard. These are known as beats. The beat frequency is equal to the absolute value of the difference in frequency of the two waves. To tune a piano, a musician takes help of beat frequency. He plucks the string and tap a tuning fork at the same time. If the two sound sources— the piano string and the tuning fork, do not produce identical frequency then the musician hears detectable beats. Musician will then adjust the tension of the piano string and repeat the process until the beats are no longer be heard. Tension of the wire changes the frequency of the wire.

    As the piano string becomes more in tune with the tuning fork, the beat frequency reduces and approaches 0 Hz. When beats are no longer heard, the piano string is tuned to the tuning fork; i.e. they play the same frequency. The process allows the musician to match the strings' frequencies to the frequencies of a standardized set of tuning forks.

    Q. A musician while tuning a piano with a standard tuning fork of frequency 256 Hz, hears beats of 5 Hz. What may be the frequency of the piano?

    Solution

    The beat frequency is equal to the absolute value of the difference in frequency of the two waves. So, piano wire frequency is (256 + 5) Hz or (256 – 5)Hz

  • Question 7
    1 / -0

    Attempt All sub parts from each question.

    Tuning a piano wire: When we hear two frequencies which are very close to each other but not exactly equal then distinct waxing and waning of the intensity of the sound is heard. These are known as beats. The beat frequency is equal to the absolute value of the difference in frequency of the two waves. To tune a piano, a musician takes help of beat frequency. He plucks the string and tap a tuning fork at the same time. If the two sound sources— the piano string and the tuning fork, do not produce identical frequency then the musician hears detectable beats. Musician will then adjust the tension of the piano string and repeat the process until the beats are no longer be heard. Tension of the wire changes the frequency of the wire.

    As the piano string becomes more in tune with the tuning fork, the beat frequency reduces and approaches 0 Hz. When beats are no longer heard, the piano string is tuned to the tuning fork; i.e. they play the same frequency. The process allows the musician to match the strings' frequencies to the frequencies of a standardized set of tuning forks.

    Q. A musician while tuning a piano with a standard tuning fork of frequency 256 Hz, initially heard beats of 5 Hz. He then increased the tension and found that the beat frequency has reduced to 2Hz. What he should do to achieve tuning?

    Solution

    Increase in tension has increased the frequency of the piano wire and hence the difference of frequency (beat frequency) has reduced. So, the tension is to be further increased to make the beat frequency 0.

  • Question 8
    1 / -0

    Attempt All sub parts from each question.

    Tuning a piano wire: When we hear two frequencies which are very close to each other but not exactly equal then distinct waxing and waning of the intensity of the sound is heard. These are known as beats. The beat frequency is equal to the absolute value of the difference in frequency of the two waves. To tune a piano, a musician takes help of beat frequency. He plucks the string and tap a tuning fork at the same time. If the two sound sources— the piano string and the tuning fork, do not produce identical frequency then the musician hears detectable beats. Musician will then adjust the tension of the piano string and repeat the process until the beats are no longer be heard. Tension of the wire changes the frequency of the wire.

    As the piano string becomes more in tune with the tuning fork, the beat frequency reduces and approaches 0 Hz. When beats are no longer heard, the piano string is tuned to the tuning fork; i.e. they play the same frequency. The process allows the musician to match the strings' frequencies to the frequencies of a standardized set of tuning forks.

    Q. As tension of a wire of fixed length increases, the frequency emitted by it

    Solution

    Increasing the tension on a string increases the speed of a wave, which increases the frequency (for a given length). (Smaller lengths of string result in shorter wavelength and thus higher frequency.)

  • Question 9
    1 / -0

    Attempt All sub parts from each question.

    Tuning a piano wire: When we hear two frequencies which are very close to each other but not exactly equal then distinct waxing and waning of the intensity of the sound is heard. These are known as beats. The beat frequency is equal to the absolute value of the difference in frequency of the two waves. To tune a piano, a musician takes help of beat frequency. He plucks the string and tap a tuning fork at the same time. If the two sound sources— the piano string and the tuning fork, do not produce identical frequency then the musician hears detectable beats. Musician will then adjust the tension of the piano string and repeat the process until the beats are no longer be heard. Tension of the wire changes the frequency of the wire.

    As the piano string becomes more in tune with the tuning fork, the beat frequency reduces and approaches 0 Hz. When beats are no longer heard, the piano string is tuned to the tuning fork; i.e. they play the same frequency. The process allows the musician to match the strings' frequencies to the frequencies of a standardized set of tuning forks.

    Q. A musician while tuning a piano with a standard tuning fork of frequency 256 Hz, initially heard beats of 5 Hz. He then increased the tension and found that the beat disappears. What was the initial frequency of the piano wire?

    Solution

    Beat frequency is the difference in frequencies. As increasing frequency of piano wire (by increasing the tension) has reduced the beat frequency to 0, then the initial frequency of the piano wire was 256 – 5 = 251 Hz.

  • Question 10
    1 / -0

    Attempt All sub parts from each question.

    Tuning a piano wire: When we hear two frequencies which are very close to each other but not exactly equal then distinct waxing and waning of the intensity of the sound is heard. These are known as beats. The beat frequency is equal to the absolute value of the difference in frequency of the two waves. To tune a piano, a musician takes help of beat frequency. He plucks the string and tap a tuning fork at the same time. If the two sound sources— the piano string and the tuning fork, do not produce identical frequency then the musician hears detectable beats. Musician will then adjust the tension of the piano string and repeat the process until the beats are no longer be heard. Tension of the wire changes the frequency of the wire.

    As the piano string becomes more in tune with the tuning fork, the beat frequency reduces and approaches 0 Hz. When beats are no longer heard, the piano string is tuned to the tuning fork; i.e. they play the same frequency. The process allows the musician to match the strings' frequencies to the frequencies of a standardized set of tuning forks.

    Q. A musician while tuning a piano with a standard tuning fork of frequency 256 Hz, hears beats of 5 Hz. What he should do to achieve the tuning?

    Solution

    Since tension of the wire changes the frequency of the wire, musician will adjust the tension of the piano string to change the frequency and repeat the process until the beats are no longer be heard.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now