Self Studies
Selfstudy
Selfstudy

Mathematics Test - 2

Result Self Studies

Mathematics Test - 2
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    If distance between the foci of an ellipse is 6 and the distance between directrices is 12, then the length of its latus rectum is:

    Solution
    given
    2ae \(=6\)
    \(\therefore a e=3\)
    Also,
    \(\frac{2 a}{c}=126\)
    \(\therefore \frac{a}{e}=63\)
    from (1) and (2)
    \(e=\frac{1}{\sqrt{2}}, a=3 \sqrt{2}\)
    since, \(b^{2}=a^{2}\left(1-e^{2}\right)\)
    Substitute the values of "e' and 'a' in above equation
    \(\Rightarrow b^{2}=9\)
    \(\therefore b=\pm 3\)
    length of latus rectum \(=\frac{2 b^{2}}{a}=\frac{2 \times 9}{3 \sqrt{2}}=3 \sqrt{2}\)
    Hence, option, A is correct answer
  • Question 2
    1 / -0

    The differential equation of all non - horizontal lines in a plane is 

    Solution

    Let y = mx+c represents all non horizontal line in a plane.

     dydx=m and d2ydx2=0

    Hence, option, A is correct answer
  • Question 3
    1 / -0

    If three natural numbers between 1 and 100 are selected randomly, then the probability that all are divisible by both 2 and 3 is 

    Solution

    Let E=Events of numbers divisible by 2 and 3 (i.e., divisible by 6)

    =(6,12,....,96)

    Required Propobability= C316100C3

    =16×15 ×143 ×2 ×1100 ×99 ×983 ×2 ×1=41155

    Hence, option, D is correct answer
  • Question 4
    1 / -0

    If the two pairs of lines x2 – 2mxy – y2 = 0 and x2 – 2nxy – y2 = 0 are such that one of them represents the bisector of the angles between the other, then

    Solution

    Equation of the bisector of the angel between the lines x2-2mxy-y2=0 are given by

    x2-y21-(-1)=xy-mx2+2mxy-y2=0...(i)

    Since, (i) and x2-2nxy-y2=0 rerepresents the same pair of lines.

    11=2m-2n

    mn=-1mn+1=0

    Hence, option, A is correct answer
  • Question 5
    1 / -0

    A man of 2 m height walks at a uniform speed of 6 km/h away from a lamp post of 6 m height. The rate at which the length of his shadow increases is

    Solution


    and in 



    On differentiating w.r.t. , we get

     given 
    Hence, option, C is correct answer
  • Question 6
    1 / -0

    In how many ways can 8 students be arranged in a row?

    Solution

    Required number of ways = 8!

    Hence, option, A is correct answer
  • Question 7
    1 / -0

    If f(x) = | x |3, then f′(0) =

    Solution
    \begin{equation}
    \begin{aligned}
    &R f^{\prime}(0)=_{1 \rightarrow 0}^{10} \frac{f(0+h)-f(0)}{h}\\
    &=\lim _{h \rightarrow 0} \frac{|h|^{3}-0}{h}=\lim _{h \rightarrow 0} \frac{h^{3}}{h}=\lim _{h \rightarrow 0} h^{2}=0\\
    &L f^{\prime}(0)=h^{\lim }_{h \rightarrow 0} \frac{f(0-h)-f(0)}{-h}=h_{h \rightarrow 0}^{\lim } \frac{1+h^{3}}{-h}\\
    &R f^{\prime}(0)=L f^{\prime}(0)=0, \text { Hence, } f(0)=0
    \end{aligned}
    \end{equation}
    Hence, option, A is correct answer
  • Question 8
    1 / -0

    Let f(x)=(x + 1)2−1,(x≥−1). Then the set S={x:f(x)= f-1(x)}is

    Solution
    \begin{equation}
    \begin{aligned}
    &\text { Let, }\\
    &f(x)=(x+1)^{2}-1\\
    &y=(x+1)^{2}-1\\
    &(x+1)^{2}=y+1\\
    &(x+1)=\pm \sqrt{y+1}\\
    &x=\pm \sqrt{y+1}-1\\
    &f^{-1}(x)=\pm \sqrt{x+1}-1
    \end{aligned}
    \end{equation}
    Hence, option, C is correct answer
  • Question 9
    1 / -0

    Let f(x) = x3/2, then f′(0) =

    Solution
    \(R f(0)=\lim _{h \rightarrow 0} \frac{t(0+h)-f(0)}{h}=\lim _{h \rightarrow 0} \frac{h^{3 / 2}-0}{h}=\lim _{h \rightarrow 0} n^{1 / 2}=0\)
    \(L f(0)=\lim _{h \rightarrow 0} \frac{f(0-h)-f(0)}{-h}=\lim _{h \rightarrow 0} \frac{(-h)^{3 / 2}-0}{(-h)} \cdot \lim _{h \rightarrow 0}(-h)^{1 / 2}\)
    which is imaginary
    So, \(R f(0)\) Lf (0) . Hence, \(f(0)\) does not exist.
    Hence, option, C is correct answer
  • Question 10
    1 / -0

    If f(x)=|x−2|and g(x)=f[f(x)], then g′(x)=

    ______ for x>20

    Solution

    g (x) = f (f( x ))

    = f (x) - 2

     x- 2 - 2 

     x - 2 - 2  =  x - 4 

    g(x) = x - 4

    g'x = 1

    Hence, option, B is correct answer
  • Question 11
    1 / -0

    Let f(x + y) = f(x)f(y), for all x, y ∈ R. If f'(0) = 2 and f(4) = 4, then f'(4) is equal to

    Solution
    \begin{array}{l}
    f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
    =\lim _{h \rightarrow 0} \frac{f(x) f\left(1+\frac{h}{x}\right)-f(x)}{h} \\
    f^{\prime}(x)=\frac{f(x)}{x}\left(f^{\prime}(1)\right) \\
    \int \frac{d f(x)}{f(x)}=\int \frac{2}{x} d x \\
    \log f(x)=2 \log x+c \\
    \text { Given } f(2)=4 \\
    \Rightarrow \log 4=2 \log 2+c \\
    \Rightarrow c=0 \\
    \Rightarrow \log f(x)=2 \log x \\
    \Rightarrow f(x)=x^{2} \\
    f^{\prime}(x)=2 x \\
    f^{\prime}(4)=8
    \end{array}
    Hence, option, D is correct answer
  • Question 12
    1 / -0
    If \(f(x)=\frac{1}{1-x}\), then the set of points of discontinuity of the function \(f(f(f(x)))\) is
    Solution
    \begin{equation}
    \begin{aligned}
    &f(x)=\frac{1}{1-x}\\
    &f(f(x))=\frac{1}{1-\frac{1}{1-x}}=\frac{1-x}{-x}=\frac{x-1}{x}\\
    &f(f(f(x)))=\frac{1}{1-\frac{x-1}{x}}=x\\
    &\text { This is continuous everywhere. }
    \end{aligned}
    \end{equation}
    Hence, option, B is correct answer
  • Question 13
    1 / -0
    \begin{equation}
    \begin{aligned}
    &\text { Let } f(x) \text { be a function satisfying } f(x+y)-f(x) f(y) \text { for all } x, y\\
    &\in R \& f(x)=1+x g(x), \text { where } \lim _{x \rightarrow 0} g(x)-1 f(x) \text { is equal to }
    \end{aligned}
    \end{equation}
    Solution
    \begin{equation}
    \begin{array}{l}
    f(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{f(x) f(h)-f(x)}{h}-f(x)_{h \rightarrow 0} \frac{\lim _{h} \frac{f(h)-1}{h}}{h}= \\
    f(x)\left(\lim _{h \rightarrow 0} \frac{1+h g(h)-1}{h}\right) \\
    \lim _{h \rightarrow 0} g(h)=f(x)=1+x g(x)
    \end{array}
    \end{equation}
    Hence, option, C is correct answer
  • Question 14
    1 / -0

    What is \(\tan \left\{2 \tan ^{-1}\left(\frac{1}{3}\right)\right\}\) equal to?

    Solution

    The given expression is,

    \(\tan \left\{2 \tan ^{-1}\left(\frac{1}{3}\right)\right\}\)

    We know that,

    \(2  \tan ^{-1} x=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)\) where \(-1

    Applying the above mentioned formula in the given expression,

    \( \tan \left\{2 \tan ^{-1}\left(\frac{1}{3}\right)\right\}\)

    \(=\tan\left\{\tan ^{-1}\left(\frac{2 \times \frac{1}{3}}{1-\left(\frac{1}{3}\right)^{2}}\right)\right\}\)

    \(=\tan\left\{\tan ^{-1}\left(\frac{3}{4}\right)\right\}\quad[\because\tan\{\tan^{-1}(x)\}=x]\)

    \(=\frac{3}{4}\)

  • Question 15
    1 / -0
    \begin{equation}
    \text { If } y=\left(1+x+\frac{x^{2}}{2 !}+\frac{x^{3}}{3 !}+-\infty\right) \cdot \text { then } \frac{d y}{d x}
    \end{equation}
    Solution
    \begin{equation}
    \begin{array}{l}
    y=\left(1+x+\frac{x^{2}}{2}+\frac{x^{3}}{3 !}+\ldots \infty\right) \\
    y=e^{x} \\
    \frac{d y}{d x}-e^{x}=y
    \end{array}
    \end{equation}
    Hence, option, D is correct answer
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now