Let \(A=18^{\circ}\)
Therefore, \(5 A=90^{\circ}\)
\(\Rightarrow 2 A+3 A=90^{\circ}\)
\(\Rightarrow 2 \theta=90^{\circ}-3 A\)
Taking sine on both sides, we get
\(\sin 2 A=\sin \left(90^{\circ}-3 A\right)=\cos 3 A\)
\(\Rightarrow 2 \sin A \cos A=4 \cos ^{3} A-3 \cos A\)
\(\Rightarrow 2 \sin A \cos A-4 \cos ^{3} A+3 \cos A=0\)
\(\Rightarrow \cos A\left(2 \sin A-4 \cos ^{2} A+3\right)=0\)
Dividing both sides by \(\cos A=\cos 18^{\circ} \neq 0,\) we get
\(\Rightarrow 2 \sin \theta-4\left(1-\sin ^{2} A\right)+3=0\)
\(\Rightarrow 4 \sin ^{2} A+2 \sin A-1=0,\) which is a quadratic in \(\sin A\)
Therefore, \(\sin \theta=\frac{-21 \sqrt{4(4)(-1)}}{2(4)}\)
\(\Rightarrow \sin \theta=\frac{-2 \pm \sqrt{4+10}}{8}\)
\(\Rightarrow \sin \theta=\frac{-212 \sqrt{5}}{8}\)
\(\Rightarrow \sin \theta=\frac{11 \sqrt{5}}{4}\)
Now \(\sin 18^{\circ}\) is positive, as \(18^{\circ}\) lies in first quadrant.
Therefore, \(\sin 18^{\circ}=\sin A=\frac{-11 \sqrt{5}}{4}\)
Now, \(\cos 36^{\circ}=\cos 2 \cdot 18^{\circ}\)
\(\Rightarrow \cos 36^{\circ}=1-2 \sin ^{2} 18^{\circ}\)
\(\Rightarrow \cos 36^{\circ}=1-2\left(\frac{\sqrt{5}-1}{4}\right)^{2}\)
\(\Rightarrow \cos 36^{\circ}=\frac{10-2(5+1-2 \sqrt{5})}{10}\)
\(\Rightarrow \cos 36^{\circ}=\frac{1+4 \sqrt{5}}{16}\)
\(\Rightarrow \cos 36^{\circ}=\frac{\sqrt{5}+1}{4}\)
Therefore, \(\cos 36^{\circ}=\frac{\sqrt{5}+1}{4}\)