Self Studies

Mathematics Test - 11

Result Self Studies

Mathematics Test - 11
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    What is the value of cos 36°?

    Solution

    Let \(A=18^{\circ}\)

    Therefore, \(5 A=90^{\circ}\)

    \(\Rightarrow 2 A+3 A=90^{\circ}\)

    \(\Rightarrow 2 \theta=90^{\circ}-3 A\)

    Taking sine on both sides, we get

    \(\sin 2 A=\sin \left(90^{\circ}-3 A\right)=\cos 3 A\)

    \(\Rightarrow 2 \sin A \cos A=4 \cos ^{3} A-3 \cos A\)

    \(\Rightarrow 2 \sin A \cos A-4 \cos ^{3} A+3 \cos A=0\)

    \(\Rightarrow \cos A\left(2 \sin A-4 \cos ^{2} A+3\right)=0\)

    Dividing both sides by \(\cos A=\cos 18^{\circ} \neq 0,\) we get

    \(\Rightarrow 2 \sin \theta-4\left(1-\sin ^{2} A\right)+3=0\)

    \(\Rightarrow 4 \sin ^{2} A+2 \sin A-1=0,\) which is a quadratic in \(\sin A\)

    Therefore, \(\sin \theta=\frac{-21 \sqrt{4(4)(-1)}}{2(4)}\)

    \(\Rightarrow \sin \theta=\frac{-2 \pm \sqrt{4+10}}{8}\)

    \(\Rightarrow \sin \theta=\frac{-212 \sqrt{5}}{8}\)

    \(\Rightarrow \sin \theta=\frac{11 \sqrt{5}}{4}\)

    Now \(\sin 18^{\circ}\) is positive, as \(18^{\circ}\) lies in first quadrant.

    Therefore, \(\sin 18^{\circ}=\sin A=\frac{-11 \sqrt{5}}{4}\)

    Now, \(\cos 36^{\circ}=\cos 2 \cdot 18^{\circ}\)

    \(\Rightarrow \cos 36^{\circ}=1-2 \sin ^{2} 18^{\circ}\)

    \(\Rightarrow \cos 36^{\circ}=1-2\left(\frac{\sqrt{5}-1}{4}\right)^{2}\)

    \(\Rightarrow \cos 36^{\circ}=\frac{10-2(5+1-2 \sqrt{5})}{10}\)

    \(\Rightarrow \cos 36^{\circ}=\frac{1+4 \sqrt{5}}{16}\)

    \(\Rightarrow \cos 36^{\circ}=\frac{\sqrt{5}+1}{4}\)

    Therefore, \(\cos 36^{\circ}=\frac{\sqrt{5}+1}{4}\)

  • Question 2
    1 / -0

    Consider the following statements:

    1. Value of sin θ oscillates between –1 and 1.

    2. Value of cos θ oscillates between 0 and 1.

    Which of the above statements is/are correct?

    Solution

    \(-1 . \sin \theta \in[-1,1] ; Q \in R,\) the value of \(\sin \theta\) lies between -1 to 1

    2. \(\cos \theta \in[-1,1] ; Q \in R,\) the value of \(\sin \theta\) lies between -1 to 1.

  • Question 3
    1 / -0

    If x and y are positive and xy > 1, then what is tan-1x + tan-1y equal to?

    Solution

    \(\tan ^{-1} x+\tan ^{1} y=\pi+\tan ^{-1}\left[\frac{x+y}{1+x y}\right]\)

    if \(x<0, y<0\) and \(x y>1\), then \(\tan ^{-1} x+\tan ^{-1} y=-\pi+\tan ^{-1}\left(\frac{x+y}{1-x y}\right)\)

  • Question 4
    1 / -0

    Consider the following statements:

    1. \(n\left(\sin ^{2} 67 \frac{1^{\circ}}{2}-\sin ^{2} 22 \frac{1^{\circ}}{2}\right)>1\) for all positive integers \(n \geq 2\)

    2. If \(x\) is any positive real number, then \(n x>1\) for all positive integers \(n \geq 2\) Which of the above statements is/are correct?

    Solution
    Give \(n\left(\sin ^{2} 67 \frac{1^{\circ}}{2}-\sin ^{2} 22 \frac{1^{\circ}}{2}\right)\)
    \(\operatorname{or} n\left(\sin ^{2} \frac{135^{\circ}}{2}-\sin ^{2} \frac{45^{\circ}}{2}\right)\)
    \(=n\left(\sin \frac{135^{\circ}}{2}+\sin \frac{45^{\circ}}{2}\right)\left(\sin \frac{135^{\circ}}{2}-\sin \frac{45^{\circ}}{2}\right)\)
    \(=n\left[2 \sin \frac{\left(\frac{135^{\circ}}{2}+\frac{45^{\circ}}{2}\right)}{2} \cdot \cos \frac{\left(\frac{135}{2}-\frac{45^{\circ}}{2}\right)}{2}\right]\)
    \(\left[2 \cdot \cos \left(\frac{\frac{135^{\circ}+45^{\circ}}{2}}{2}\right) \cdot \sin \left(\frac{\frac{135^{\circ}-45^{\circ}}{2}}{2}\right)\right]\)
    \(=n\left[2 . \sin \left(\frac{90^{\circ}}{2}\right) \cdot \cos \left(\frac{45^{\circ}}{2}\right)\right]\left[2 . \cos \left(\frac{90^{\circ}}{2}\right) \cdot \sin \left(\frac{45^{\circ}}{2}\right)\right]\)
    \(=2 n\left(2 \sin \frac{45^{\circ}}{2} \cdot \cos \frac{45^{\circ}}{2}\right)\left(\sin 45^{\circ} \cdot \cos 45^{\circ}\right)\)
    \(=2 n \cdot \sin \left(2 \times \frac{45^{\circ}}{2}\right)\left(\frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2}}\right)\)
    \(=2 n . \sin 45 \times \frac{1}{2}=n \cdot \frac{1}{\sqrt{2}}=\frac{n}{\sqrt{2}}\)
    \(\therefore \frac{n}{\sqrt{2}}>1\) for all positive integers \(n \geq 2\)
    \(\therefore\) Statement 1 is true
    Statement 2 \(n x>1, \forall n \geq 2\)
    \(\Rightarrow n>\frac{1}{x}, \forall n \geq 2\)
    \(\mathrm{x} \epsilon(0, \infty),\) then we take \(\mathrm{x}=1\)
    \(\mathrm{n}>1,\) but \(\mathrm{n}\) is always greater or equal to 2 for all \(\mathrm{x}\) positive real number.
    \(\therefore\) Statement 2 is false.
  • Question 5
    1 / -0

    Consider the following statements:

    1. If 3θ is an acute angle such that sin 3θ = cos 2θ, then the measurement of θ in radian equals toπ/10

    2. One radian is the angle subtended at the centre of a circle by an arc of the same circle whose length is equal to the diameter of that circle.

    Which of the above statements is/are correct?

    Solution

    sin3θ=cos2θsin3θ=sin(π22θ)3θ=π22θ5θ=π2θ=π10

    One radian is the angle subtended at the center of a circle by an arc of a circle by an arc of the same circle whose length is equal to radius of that circle.

    hence statement 1 is correct.

  • Question 6
    1 / -0

    From an aeroplane above a straight road the angle of depression of two positions at a distance 20 m apart on the road are observed to be 30° and 45°. The height of the aeroplane above the ground is:

    Solution

    \(\operatorname{In} \Delta \mathrm{ABC}, \tan 45^{\circ}=\frac{A B}{B C}=\frac{h}{x}\)

    \(1=\frac{h}{x}\)

    \(h=x\)

    \(\tan 30^{\circ}=\frac{A B}{B D}\)

    \(\frac{1}{\sqrt{3}}=\frac{h}{x+20}\)

    \(x+20=\sqrt{3} h\)

    \(h+20=\sqrt{3} h\)

    \(20=(\sqrt{3}-1) h\)

    \(\mathrm{h}=\frac{20}{\sqrt{3}-1}\)

    \(=\frac{20}{\sqrt{3}-1} \times \frac{\sqrt{3}+1}{\sqrt{3}+1}\)

    \(=\frac{20(\sqrt{3}+1)}{2}=10(\sqrt{3}+1) m\)

    Hence the height is \(10(\sqrt{3}+1) m\)

  • Question 7
    1 / -0

    Consider the following statements:

    1. There exists no triangle ABC for which sin A + sin B = sin C.

    2. If the angle of a triangle are in the ratio 1 : 2 : 3, then its sides will be in the ratio 1 : √3 : 2.

    Which of the above statements is/are correct?

    Solution

    1. Given, \(\sin A+\sin B=\sin C\)

    \(\mathrm{a}+\mathrm{b}+\mathrm{c}\left(\because B y \sin e \operatorname{law}, \frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}=K\right.\)

    Here, the sum of two sides of \(\Delta A B C\) is equal to the third side, but it is not possible (Because by triangle inequality, the sum of the length of two sides of a triangle is always greater than the length of the third side)

    \(a+b>c\)

    2. Ratio of angles of a triangle \(A: B: C=1: 2: 3\)

    \(A+B+C=180^{\circ}\)

    \(\therefore A=30^{\circ}\)

    \(\mathrm{B}=60^{\circ}\)

    \(\mathrm{C}=90^{\circ}\)

    The ratio in sides according to sine rule \(a: b: c=\sin A: \sin B: \sin C\)

    \(=\sin 30^{\circ}: \sin 60^{\circ}: \sin 90^{\circ}\)

    \(=\frac{1}{2}, \frac{\sqrt{3}}{2}, 1=1: \sqrt{3}: 2\)

  • Question 8
    1 / -0

    Four points (0, 4, 1) (2, 3, -1) (4, 5, 0) (2, 6, 2) Which of the following are the vertices of the figure.

    Solution

    The constant of four points A, B, C and D is (0, 4, 1) (2, 3, -1) (4, 5, 0) (2, 6, 2), AB = BC = CD = DA = 3 unit

    And AC = BD =18 units

    Therefore, the four sides and diagonals of the quadrilateral are equal,
    Hence, quadrilateral ABCD will be square.

  • Question 9
    1 / -0

    What is \(\frac{1+\sin A}{1-\sin A}-\frac{1-\sin A}{1+\sin A}\) equal to?

    Solution

    1+sinA1-sinA-1-sinA1+sinA

    =1+sinA2-1-sinA21-sinA1+sinA

    =4×sinA×112-sinA2

    =4sinAcosA2

    =4tanAsecA

  • Question 10
    1 / -0

    What is \(\frac{\cot 224^{\circ}-\cot 134^{\circ}}{\cot 226^{\circ}+\cot 316^{\circ}}\) equal to?

    Solution

    \(\frac{\cot 224^{\circ}-\cot 134^{\circ}}{\cot 226^{\circ}+\cot 316^{\circ}}\)

    \(=\frac{\cot \left(180^{\circ}+44^{\circ}\right)-\cot \left(180^{\circ}-46^{\circ}\right)}{\cot \left(180+46^{\circ}\right)+\cot \left(270^{\circ}+46\right)^{\circ}}\)

    \(=\frac{\cot 44^{\circ}+\cot 46^{\circ}}{\cot 46^{\circ}-\tan 46^{\circ}}=\frac{\tan 46^{\circ}+\tan 44^{\circ}}{\tan 44^{\circ}-\tan 46^{\circ}}\)

    \(=\frac{\sin \left(46^{\circ}+44^{\circ}\right)}{\sin \left(44^{\circ}-46^{\circ}\right)}=-\operatorname{cosec} 2^{\circ}\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now