\(\left(x^{3}-\frac{1}{x^{2}}\right)^{n}\)
General term, \(T_{r+1}=^{n} C_{r}\left(x^{3}\right)^{n-r} \cdot\left(\frac{1}{x^{2}}\right)^{r}\)
\(=^{n} C_{r} 3^{(3 n-3 r)} \cdot(-1)^{r} \cdot r^{-2 r}\)
\(=^{n} C_{r \cdot}(-1)^{r} \cdot x^{(3 n-5 r)}\)
For the coefficient \(x^{5}\) Put \(3 n-5 r=5\)
\(5 r=3 n-5\)
\(r=\frac{3 n}{5}-1\)
\(\therefore\) Coefficient of \(x^{5}=^{n} C_{\left(\frac{3 n}{5}-1\right)}(-1)^{\left(\frac{3 n}{5}-1\right)}\)
For the coefficient of \(x^{10}\) Put \(3 n-5 r=10\)
\(5 r=3 n-10\)
\(\therefore r=\frac{3 n}{5}-2\)
\(\therefore\) Coefficent of \(x^{10}=^{n} C_{\left(\frac{3 n}{5}-2\right)}(-1)^{\left(\frac{3 n}{5}-2\right)}\)
The sum of the coefficient of \(x^{5}\) and \(x^{10}=0\) \(\Rightarrow^{n} C_{\left(\frac{3 n}{5}-1\right)}(-1)^{\left(\frac{3 n}{5}-1\right)}+^{n} C_{\left(\frac{3 n}{5}-2\right)}(-1)^{\left(\frac{3 n}{5}-2\right)}=0\)
\(\Rightarrow(-1)^{\frac{3 n}{5}}\left[^{n} C_{\left(\frac{3 n}{5}-1\right)} \cdot(-1)^{-1}+^{n} C_{\left(\frac{3 n}{5}-2\right)}(-1)^{(-2)}\right]=0\)
\(\Rightarrow-^{n} C_{\left(\frac{3 n}{5}-1\right)}+^{n} C_{\left(\frac{3 n}{5}-2\right)}=0\)
\(\mathrm{n}=15\)
Total term in the expansion of \(\left(x^{3}-\frac{1}{2}\right)^{15}\) is 16
\(\therefore\) middle term \(=8^{\text {th }}\) term and \(9^{\text {th }}\) term \(T_{8}=T_{(7+1)}=^{15} C_{7} \cdot(-1)^{7} \cdot x^{(3 \times 15-5 \times 7)}\)
\(=-^{15} C_{7} \cdot x^{10} \quad(\text { from eq. }(\mathrm{i}))\)
\(T_{9}=T_{(8+1)}=^{15} C_{8} \cdot(-1)^{8} \cdot x^{(3 \times 15-5 \times 8)}\)
\(=-15 C_{8} \cdot x^{5} \quad(\text { from eq. }(\text { ii }))\)
The sum of the coefficients of the two middle terms \(=-^{15} C_{7}+^{15} C_{8}=-^{15} C_{7}+^{15} C_{7} \cdot\left[\because^{n} C_{r}=^{n} C_{n-r}\right]\)