Self Studies

Mathematics Test - 13

Result Self Studies

Mathematics Test - 13
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    A wire when bent in the form of a square encloses an area of 484 sq.cm. What will be the enclosed area when the same wire is bent into the form of a circle? (Take π = 22/7)

    Solution

    Area of asquare = side × side

    Perimeter of a square = 4 × side

    Given, wire when bent in the form of a square encloses an area of 484 sq.cm

    Side = √484 = 22 cm

    Perimeter = 88 cm

    Same wire is used to make a circle.

    Perimeter of a circle of radius r = 2πr

    ⇒ 2πr = 88

    44r7 = 88

    ⇒ r = 14 cm

    Area of a circle of radius r = πr2

    Area enclosed by the circle

  • Question 2
    1 / -0

    Solution

  • Question 3
    1 / -0

    The number 251 in decimal system is expressed in binary system by :

    Solution

  • Question 4
    1 / -0

    What is the argument of the complex number1+i2+i3-iwhere i =-1?

    Solution

    1+i2+i3-i=1+3i3-i

    =1+3i3-i×3+i3+i=10i10=ior0+i

    Argument,θtan-110= tan-1tanπ2=π2

  • Question 5
    1 / -0

    Consider the following statement in respect of the matrix A =012-10-3-230

    1. The matrix A is skew-symmetric

    2. The matrix A is symmetric.

    3. The matrix A is invertible.

    Which of the above statements is/are correct?

    Solution

    A=012-10-3-230

    AT=0-1-21032-30=-012-10-3-230=-A

    Hence, A is skew symmetric matrix

    A=012-10-3-230=1(-6)-2(-3)=-6+6=0

    Therefore A is non-invertible.

  • Question 6
    1 / -0

    Consider two matrices \(A=\left[\begin{array}{ll}1 & 2 \\ 2 & 1 \\ 1 & 1\end{array}\right]\) and \(B=\left[\begin{array}{ccc}1 & 2 & -4 \\ 2 & 1 & -4\end{array}\right]\)
    Which one of the following is correct?

    Solution

    I. \(A B=\left|\begin{array}{cc}1 & 2 \\ 2 & 1 \\ 1 & 1\end{array}\right|_{3 \times 2}\left|\begin{array}{ccc}1 & 2 & -4 \\ 2 & 1 & -4\end{array}\right|_{2 \times 3}\)

    \(=\left|\begin{array}{ccc}5 & 4 & -12 \\ 4 & 5 & -12 \\ 3 & 3 & -8\end{array}\right|\)

    II. \(\mathrm{BA}=\left|\begin{array}{ccc}1 & 2 & -4 \\ 2 & 1 & -4\end{array}\right|_{2 \times 3}\left|\begin{array}{cc}1 & 2 \\ 2 & 1 \\ 1 & 1\end{array}\right|_{3 \times 2}\)

    \(=\left|\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right|_{2 \times 2}\)

    Here, \(\mathrm{B}\) is not the right inverse of \(\mathrm{A}\) but \(\mathrm{B}\) is the left inverse of \(\mathrm{A}\).

  • Question 7
    1 / -0

    One of the roots of \(\left|\begin{array}{ccc}x+a & b & c \\ a & x+b & c \\ a & b & x+c\end{array}\right|=0\) is:

    Solution

    \(\left|\begin{array}{ccc}x+a & b & c \\ a & x+b & c \\ a & b & x+c\end{array}\right|=0\)

    Applying, \(C_{1} \rightarrow C_{1}+C_{2}+C_{3}\)

    \(\left|\begin{array}{ccc}(a+b+c+x) & b & c \\ (a+b+c+x) & x+b & c \\ (a+b+c+x) & b & c+x\end{array}\right|=0\)

    \((a+b+c+x)\left|\begin{array}{ccc}1 & b & c \\ 1 & x+b & c \\ 1 & b & c+x\end{array}\right|=0\)

    \(C_{2} \rightarrow C_{2}-C_{1}, C_{3} \rightarrow C_{3}-C_{1}\)

    \((a+b+c+x)\left|\begin{array}{ccc}1 & b & c \\ 0 & x & 0 \\ 0 & 0 & x\end{array}\right|=0\)

    \((a+b+c+x) 1 \cdot x^{2}=0\)

    \(x=0,-(a+b+c)(\because x \neq 0)\)

  • Question 8
    1 / -0

    If A is any matrix, then the product AA is defined only when A is a matrix of order m × n where:

    Solution

    A A is defined only when A is a matrix of order \(\mathrm{m} \times \mathrm{n}\) where \(\mathrm{m}=\mathrm{n}\) \(A \times A=(m \times n)(m \times n)=(m \times n)(n \times n)\) if \(m=n\)

    \(=m \times n=n \times n\) or \(m \times m\)

    \(=A\) is a square matrix.

  • Question 9
    1 / -0

    The determinant of an odd order skew symmetric matrix is always:

    Solution

    We know that, elements of principal diagonals of a skew-symmetric matrix are all zero. \(\mathrm{A}=\left|\begin{array}{ccc}0 & a & b \\ -a & 0 & -c \\ -b & c & 0\end{array}\right|_{3 \times 3} \Rightarrow|A|\left|\begin{array}{ccc}0 & a & b \\ -a & 0 & -c \\ -b & c & 0\end{array}\right|\)

    \(=a b c-a b c=0\)

  • Question 10
    1 / -0

    If any two adjacent rows or columns of a determinant are interchanged in position, the value of the determinant:

    Solution

    If any two adjacent rows or columns of a determinant are interchanged in position, the value of the determinant changes its sign.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now