Self Studies

Mathematics Test - 25

Result Self Studies

Mathematics Test - 25
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    If HCF (p, q, r) = 2, LCM (p, q, r) = 120, HCF (p, q) = 4, HCF (q, r) = 2, HCF (p, r) = 2, p = 12, q = 8 then find the no ‘r’.

    Solution

    LCM(p,q,r)=pqrHCF(p,q,r)HCP(p,q)HCF(q,r)HCF(p,r)120=r×12×8×24×2×212012=r10=r

  • Question 2
    1 / -0

    An aeroplane at an altitude of 1200 meters finds that two ships are sailing towards it in the same direction. The angle of depression of the ships as observed from the aeroplane are 60° and 30° respectively. Find the distance between the two ships.

    Solution
    Let the aeroplane be at \(\mathrm{B}\) and let the two ships be at C \(\&\) D such that their angles of depression from B are
    \(30^{\circ}\) and \(60^{\circ}\) respectively.
  • Question 3
    1 / -0
    If \(\tan 2 \theta=\cot \left(\theta+6^{\circ}\right),\) where \(2 \theta\) and \(\theta+6^{\circ}\) are acute angles, find the value of \(\theta\)
    Solution

    We have

    tan2θ=cot(θ+6)cot(902θ)=cot(θ+6)902θ=θ+63θ=84θ=28

  • Question 4
    1 / -0

    A well with 10m inside diameter is dug 14m deep. Earth taken out of it is spread all a round to a width of 5m to form an embankment. Find the height of embankment.

    Solution

    We have, volume of the earth dugout \(=\left(\pi r^{2} h\right) m^{3}\) Volume of the earth dugout \(=\frac{22}{7} \times 5 \times 14\) \(=1100 \mathrm{m}^{3}\)
    Area of the embankment (shaded region) \(=\pi\left(R^{2}-r^{2}\right)\) \(=\pi\left(10^{2}-5^{2}\right)=\frac{22}{7} \times 75 m^{2}\)
    \(\therefore\) Height of the embankment \(=\frac{\text {Volume of the earth dugout}}{\text {Area of the embankment}}\)
    \(=\frac{1100}{\frac{32}{7} \times 75}=\frac{7 \times 1100}{22 \times 75}\)
    \(=4.66 \mathrm{m}\)
    We have, volume of the earth dugout \(=\left(\pi r^{2} h\right) m^{3}\) Volume of the earth dugout \(=\frac{22}{7} \times 5 \times 14\) \(=1100 \mathrm{m}^{3}\)
    Area of the embankment (shaded region) \(=\pi\left(R^{2}-r^{2}\right)\) \(=\pi\left(10^{2}-5^{2}\right)=\frac{22}{7} \times 75 m^{2}\)
    \(\therefore\) Height of the embankment \(=\frac{\text {Volume of the earth dugout}}{\text {Area of the embankment}}\)
    \(=\frac{1100}{\frac{32}{7} \times 75}=\frac{7 \times 1100}{22 \times 75}\)
    \(=4.66 \mathrm{m}\)
  • Question 5
    1 / -0
    Consider the functionf(x)=tankxx,x<03x+2k2,x0what is the non-zero value of k for which thefunction is continuous at \(x=0 ?\)
    Solution
    We have, \(f(x)=\left\{\begin{array}{c}\frac{\tan k x}{x} x<0 \\ 3 x+2 k^{2} \quad x \geq 0\end{array}\right.\)
    \(\because f(x)\) is continuous at \(x=0\) \(\therefore \lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{+}} f(x)=f(0)\)
    \(\Rightarrow \lim _{x \rightarrow 0^{-}} \frac{\tan k x}{x}=\lim _{x \rightarrow 0^{+}} 3 x+2 k^{2}=3(0)+2 k^{2}\)
    \(\Rightarrow \lim _{x \rightarrow 0-h} \frac{\tan k(0-h)}{0-h}=\lim _{x \rightarrow 0+h} 3(0+h)+2 k^{2}=2 k^{2}\)
    \(\Rightarrow \lim _{h \rightarrow 0} \frac{\tan k h}{h}=2 k^{2}\)
    \(\Rightarrow \lim _{h \rightarrow 0} k \frac{\tan k h}{k h}=2 k^{2}\)
    \(\Rightarrow k=2 k^{2} \quad\left[\because \lim _{x \rightarrow 0} \frac{\tan x}{x}=1\right]\)
    \(\therefore \mathrm{k}=1 / 2\)
  • Question 6
    1 / -0
    The ratio of the sums of \(\mathrm{m} \& \mathrm{n}\) terms of an \(\mathrm{A}\). \(\mathrm{P}\) is \(\mathrm{m}^{2}: \mathrm{n}^{2}\). The ratio of the \(\mathrm{m}^{\text {th }} \& \mathrm{n}^{\text {th }}\) terms is?
    Solution

    Sm=m2{2a+(m1)d}&Sn=n2{2a+(n1)d}SmSn=m2n2m2(2a+(m1)d)a2(2a+(n1)d)=m2n22a+(m1)d2a+(n1)d=mn{2a+(m1)d}n={2a+(n1)d}m2a(nm)=d{(n1)m(m1)n}2a(nm)=d(nm)d=2aTmTn=a+(m1)da+(n1)d=a+(m1)2aa+(n1)2a=2m12n1

  • Question 7
    1 / -0

    4 chairs & 3 tables cost Rs. 2100 and 5 chairs and 2 tables cost Rs. 1750. Find the cost of a chair & a table separately.

    Solution
    Let the cost of a chair be Rs. \(x\) and that of a table be Rs. \(y\). Then, \(4 x+3 y=2100\)
    Put the value of \(x \text { in ( } 1)\)
    \(
    \begin{array}{l}
    4 x+3 y=2100 \\
    600+3 y=2100 \\
    3 y=2100-600 \\
    3 y=1500 \\
    y=500
    \end{array}
    \)
    i.e. \(x =150, y =500\)
  • Question 8
    1 / -0

    A sum of money amounts to Rs. 4818 after 3 years and Rs. 7227 after 6 years on compound interest.The sum is

    Solution

  • Question 9
    1 / -0
    Find the value of(1+x)1+x21+x41+x8(1-x)?
    Solution
    We have,
     

    (1+x)(1+x2)(1+x4)(1+x8)(1x)=(1x)(1+x)(1+x2)(1+x4)(1+x8)=(1x2)(1+x2)(1+x4)(1+x8)=(1x4)(1+x4)(1+x8)=(1x8)(1+x8)=(1x16)

  • Question 10
    1 / -0
    The solution of the equation \(\log \left(\frac{d y}{d x}\right)=a x+b y\) is
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now