Self Studies

Mathematics Test - 26

Result Self Studies

Mathematics Test - 26
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The equation of the ellipse whose centre is at origin \((0,0),\) foci (±1,0) and eccentricity \(\frac{1}{2}\), is
    Solution
    Here foci \(=(\pm 1,0)\) and eccentricity, \(e=\frac{1}{2}\)
    \(\therefore\) ae. \(=1\) and \(e=\frac{1}{2} \Rightarrow a=2\)
    \(\therefore b^{2}=a^{2}\left(1-e^{2}\right) \Rightarrow b^{2}=4\left(1-\frac{1}{4}\right)=4 \times \frac{3}{4}=3\)
    So, the equation of required ellipse is \(\frac{x^{2}}{4}+\frac{y^{2}}{3}=1\)
  • Question 2
    1 / -0

    If in the triangle ABC, we have cotA + cotB = 2 cotC then,

    Solution
    \(\cot A+\cot B=2 \cot C\)
    \(\frac{\cos A}{\sin A}+\frac{\cos B}{\sin B}=\frac{2 \cos C}{\sin C}\)
    We know that, \(\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}, \cos B=\frac{a^{2}+c^{2}-b^{2}}{2 a c}\) and \(\cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b}\)

    \(\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=m\)
    \(\Rightarrow \sin A=\frac{a}{m}, \sin B=\frac{b}{m}, \sin C=\frac{c}{m}\)
    By substitution
    \(2 c^{2}=2\left(a^{2}+b^{2}-c^{2}\right)\)
    \(\Rightarrow 2 c^{2}=a^{2}+b^{2}\)
  • Question 3
    1 / -0
    The coefficient of \(x^{53}\) in the following expansion \(\sum_{m=0}^{100} 100 C_{m}(x-3)^{100-m} .2^{m}\) is
    Solution
    Given sigma expression can be rewritten as
    \((x-3+2)^{100}=(x-1)^{100}=(1-x)^{100}\)
    So, \(x^{53}\) will occur in \(T_{54}\)
    \(\therefore T_{54}=^{100} C_{53}(-x)^{53}\)
    Hence coefficient of \(x^{53}\) is \(-^{100} C_{53}\)
  • Question 4
    1 / -0

    From a group of 7 men & 4 women a committee of 6 persons is formed. What will be the probability that the committee will consist of exactly two women?

    Solution
    \(7 \mathrm{M}, 4 \mathrm{W},\) member in committee \(=6\)
    The favourable case may be \(\rightarrow(2 \mathrm{W}, 4 \mathrm{M})\)
    \(\therefore\) Required Probability \(=\frac{^{4} C_{2} \times^{7} C_{4}}{^{12} C_{6}}\)
    \(=\frac{6 \times 35}{462}=\frac{5}{11}\)
  • Question 5
    1 / -0
    The value of x for which \(\left[\begin{array}{lll}1 & 1 & x\end{array}\right]\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 1 & 0\end{array}\right]\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]=0\) is
    Solution
    \(\left[\begin{array}{lll}1 & 1 & x\end{array}\right]\left[\begin{array}{l}3 \\ 3 \\ 3\end{array}\right]=0\)
    \(3+3+3 x=0\)
    \(3 x=-6\)
    \(x=-2\)
  • Question 6
    1 / -0
    If \(\mathrm{x}=\mathrm{k}(\theta+\sin \theta)\) and \(\mathrm{y}=\mathrm{k}(1+\cos \theta),\) then what is the derivative of \(\mathrm{y}\) w.r.t \(\mathrm{x}\) at \(\theta=\pi / 2 ?\)
    Solution
    \(\because x=k(\theta+\sin \theta)\)
    \(\mathbf{y}=\mathrm{k}(1+\cos \theta)\)
    \(\Rightarrow \frac{d x}{d \theta}=k(1+\cos \theta)\) and \(\frac{d y}{d \theta}=-k \sin \theta\)
    \(\therefore \frac{d y}{d x}=\frac{-k \sin \theta}{k(1+\cos \theta)}\)
    \(=\frac{-2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}}{2}=\tan \frac{\theta}{2}\)
    \(\Rightarrow\left(\frac{d y}{d x}\right)_{\theta=\frac{\pi}{2}}=-\tan \frac{\pi}{4}=-1\)
  • Question 7
    1 / -0

    What is the area of a triangle whose vertices are at (3, –1, 2), (1, –1, –3) and (4, –3, 1) ?

    Solution
    Let the vertices of the \(\Delta A B C\) be \(A(3,-1,2), B(1,-1,-3)\) and \(C(4,-3,1)\)
    \(\therefore\) area of \(\Delta A B C\)
    \[
    \begin{array}{l}
    =\frac{1}{2}\left|\begin{array}{ccc}
    \hat{\imath} & \hat{\jmath} & \hat{k} \\
    1-3 & -1+1 & -3-2 \\
    4-3 & -3+1 & 1-2
    \end{array}\right| \\
    =\frac{1}{2}\left|\begin{array}{ccc}
    \hat{\imath} & \hat{\jmath} & \hat{k} \\
    -2 & 0 & -5 \\
    1 & -2 & -1
    \end{array}\right|
    \end{array}
    \]

    \(=\frac{1}{2}|\hat{\imath}(-10)-\hat{\jmath}(7)+\hat{k}(4)|\)
    \(=\frac{1}{2} \sqrt{100+49+16}\)
    \(=\frac{1}{2} \sqrt{165} \mathrm{sq}\) units
  • Question 8
    1 / -0

    If P ,q and r are in AP as well as in GP, then which one of the following is correct?

    Solution
    Given that \(p, q\) and \(r\) are in AP. \(\therefore 2 q=p+r\)
    As well as are in GP.
    \(\therefore q^{2}=p r\)
    From equation
    (1) \(\&(2),\) we get \(\mathrm{p}+\mathrm{r}=2 \sqrt{p r}\)
    \(\Rightarrow(\sqrt{p})^{2}-2 \sqrt{p} \cdot \sqrt{r}+(\sqrt{r})^{2}=0\)
    \(\Rightarrow(\sqrt{p}-\sqrt{r})^{2}=0\)
    \(\Rightarrow \sqrt{p}=\sqrt{r} \Rightarrow p=r\)
    From eq(2), we get \(q^{2}=r \cdot r=r^{2} \Rightarrow q=r\)
    Now from equations
    (3) \(\&(4)\) we get \(p=q=r\)
  • Question 9
    1 / -0

    Equation of circle which passes through the points (1, –2) and (3, –4) and touch the x axis is

    Solution
    since the circle touches x axis
    \(\therefore(x-h)^{2}+(y-k)^{2}=k^{2}\)
    Also, it passes through given points
    \((1-h)^{2}+(-2-k)^{2}=k^{2}\)_______(1)
    \(\&(3-h)^{2}+(-4-k)^{2}=k^{2}\) _______(2)
    On subtracting eq (3) from eq \((2),\) we get \(h=k+5\)
    On solving these equations, we get \(k=-10,-2 \& h=-5,3\)
    On putting the values of \((\mathrm{h}, \mathrm{k})=(-5,-10)\) or (3,-2)
    In eq(1), we get \(x^{2}+y^{2}+10 x+20 y+25=0\)
  • Question 10
    1 / -0
    In the mean value Theorem \(\frac{f(b)-f(a)}{b-a}=f^{\prime}(c), i f a=0, b=\frac{1}{2}\) and \(f(x)=x(x-1)(x-2),\) the value of \(C\) is
    Solution
    From mean value theorem \(f(c)=\frac{f(b)-f(a)}{b-a}\)
    Given \(a=0 \Rightarrow f(a)=0\)
    And \(b=\frac{1}{2} \Rightarrow f(b)=\frac{3}{8}\)
    Now, \(f^{\prime}(x)=(x-1)(x-2)+x(x-2)+x(x-1)\)
    \(\therefore f^{\prime}(c)=(c-1)(c-2)+c(c-2)+c(c-1)\)
    \(=c^{2}-3 c+2+c^{2}-2 c+c^{2}-c\)
    \(\Rightarrow f^{\prime}(c)=3 c^{2}-6 c+2\)
    By definition of mean value therorem

    \[
    \begin{array}{l}
    f(c)=\frac{f(b)-f(a)}{b-a} \\
    \Rightarrow 3 c^{2}-6 c+2=\frac{\left(\frac{a}{b}\right)-0}{\left(\frac{1}{2}\right)-0}=\frac{3}{4} \\
    \Rightarrow 3 c^{2}-6 c+\frac{5}{4}=0
    \end{array}
    \]
    since this is a quadratic equation in \(c\)
    \[
    \therefore c=\frac{6 \pm \sqrt{36-15}}{2 \times 3}
    \]
    \[
    =\frac{6 \pm \sqrt{21}}{6}=1 \pm \frac{\sqrt{21}}{6}
    \]

    since, \(C\) lies between \(\left[0, \frac{1}{2}\right]\)
    \(\therefore c=1-\frac{\sqrt{21}}{6}\)
    \(\left[\text { neglecting } c=1+\frac{\sqrt{21}}{6}\right]\)
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now