Self Studies

Mathematics Test - 27

Result Self Studies

Mathematics Test - 27
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Consider the following circles
    I. \(x^{2}+y^{2}+4 x-6 y-12=0\)
    II. \(x^{2}+y^{2}-12 x-14 y+60=0\)
    III. \(x^{2}+y^{2}-10 x+8 y+18=0\)
    Which of the above circle has equal area?
    Solution
    I. Centre \(=(-2,3)\)
    Radius \(=\sqrt{(-2)^{2}+(3)^{2}+12}\)
    \(=\sqrt{25}=5\)
    \(\therefore\) Area \(=25 \pi\)
    II. Centre \(=(6,7)\)
    Radius \(=\sqrt{6^{2}+7^{2}-60}=\sqrt{25}=5\)
    \(\therefore\) Area \(=25 \pi\)
    III. Centre \(=(5,-4)\)
    Radius \(=\sqrt{5^{2}+(-4)^{2}-18}=\sqrt{23}\)
    \(\therefore\) Area \(=23 \pi\)
    So I \(\&\) II have equal area
  • Question 2
    1 / -0
    What is the value of \(\lim _{x \rightarrow 0} \frac{\sqrt{1+x}-1}{x} ?\)
    Solution
    \(\lim _{x \rightarrow 0} \frac{\sqrt{1+x}-1}{x}=\left(\frac{0}{0}\right)\) form
    Using L' Hospital rule
    \(\lim _{x \rightarrow 0} \frac{\frac{1}{2 \sqrt{1+x}}}{1}=\lim _{x \rightarrow 0} \frac{1}{\sqrt[3]{1+x}}=\frac{1}{2}\)
  • Question 3
    1 / -0

    The area of a rectangle will be maximum for the given perimeter, when rectangle is a

    Solution
    We know that, perimeter of a rectangle
    \(S=2(x+y)\) where \(x \& y\) are adjacent sides
    \(\Rightarrow y=\frac{s-2 x}{2}\)
    Now area of rectangle \(A=x y=\frac{x}{2}(S-2 x)=\frac{1}{2}\left(S x-2 x^{2}\right)\)
    On differentiating w.r.t x of A, we get
     
    \(\frac{d A}{d x}=\frac{1}{2}(S-4 x)=0\)
    \(\Rightarrow x=\frac{s}{4}\) and \(y=\frac{s}{4}\)
    Again \(\frac{d^{2} A}{d x^{2}}=-v e\)
    Hence the area of rectangle will be maximum when rectangle is a square
  • Question 4
    1 / -0

    What is the area bounded by the lines x = 0, y = 0 and x + y + 2 = 0 ?

    Solution

  • Question 5
    1 / -0

    Kamal & Monika appeared for an interview for 2 vacancies. The probability of Kamal’s selection is 1/3 & that of Monika’s selection is 1/5. Find the probability that only one of them will be selected.

    Solution
    Required probability \(=\frac{1}{3} \times\left(1-\frac{1}{5}\right)+\frac{1}{5} \times\left(1-\frac{1}{3}\right)\)
    \(=\frac{4}{15}+\frac{2}{15}=\frac{6}{15}=\frac{2}{5}\)
  • Question 6
    1 / -0

    If two vertices of an equilateral triangle be (0,0), (3, √3). Find the third vertex.

    Solution

    \(O(0,0)\) and \(A(3, \sqrt{3})\) be the given points and Let \(B(x, y)\) be the third vertex of equilateral \(\Delta O A B\). Then \(O A=O B=A B\) \(\Rightarrow \mathrm{OA}^{2}=\mathrm{OB}^{2}=\mathrm{AB}^{2}\)
    We have, \(O A^{2}=(3-0)^{2}+(\sqrt{3}-0)^{2}=12\)
    \(O B^{2}=x^{2}+y^{2}\)
    And, \(A B^{2}=(x-3)^{2}+(y-\sqrt{3})^{2}\)
    \(\Rightarrow A B^{2}=x^{2}+y^{2}-6 x-2 \sqrt{3} y+12\)
    \(\therefore O A^{2}=O B^{2}=A B^{2}\)
    \(\Rightarrow \mathrm{OA}^{2}=\mathrm{OB}^{2}\) and \(\mathrm{OB}^{2}=\mathrm{AB}^{2}\)
    \(\Rightarrow x^{2}+y^{2}=12\)
    and \(x^{2}+y^{2}=x^{2}+y^{2}-6 x-2 \sqrt{3} y+12\)
    \(\Rightarrow x^{2}+y^{2}=12\) and \(6 x+2 \sqrt{3} y=12\)
    \(\Rightarrow x^{2}+y^{2}=12 \& 3 x+\sqrt{3} y=6\)
    \(\Rightarrow x^{2}+\left(\frac{6-3 x}{\sqrt{3}}\right)^{2}=12 \quad\left[\begin{array}{c}\because 3 x+\sqrt{3} y=6 \\ \therefore y=\frac{6-3 x}{\sqrt{3}}\end{array}\right]\)
    \(\Rightarrow 3 x^{2}+(6-3 x)^{2}=36\)
    \(\Rightarrow 12 x^{2}-36 x=0\)
    \(\Rightarrow x=0,3\)
    \(\mathrm{x}=0 \Rightarrow \sqrt{3} y=6 \Rightarrow y=\frac{6}{\sqrt{3}}=2 \sqrt{3}[\text {Putting } x=0 \text { in } 3 x+\sqrt{3} y=6]\)
    And \(x=3 \Rightarrow 9+\sqrt{3} y=6 \Rightarrow y=\frac{6-9}{\sqrt{3}}=-\sqrt{3}[\text { Putting } x=3 \text { in } 3 x+\sqrt{3} y=6]\)
    Hence the coordinates of the third vertex B are \((0,2 \sqrt{3})\) or, \((3,-\sqrt{3})\)
  • Question 7
    1 / -0
    If \(A+i B=\frac{4+2 i}{1-2 i},\) where \(i=\sqrt{-1},\) then what is the value of \(A ?\)
    Solution
    Given \(A+i B=\frac{4+2 i}{1-2 i} \times \frac{1+2 i}{i+2 i}\)
    \(=\frac{4+10 i-4}{1+4}=\frac{10 i}{5}=2 i\)
    \(\Rightarrow A+i B=0+2 i\)
    \(\Rightarrow A=0 \& B=2\)
  • Question 8
    1 / -0
    If \(y=\log \left(\frac{1+\sqrt{x}}{1-\sqrt{x}}\right),\) then \(\frac{d y}{d x}\) is equal to
    Solution
    Given \(y=\log \left(\frac{1+\sqrt{x}}{1-\sqrt{x}}\right)\)
    \(y=\log (1+\sqrt{x})-\log (1-\sqrt{x})\)
    \(\frac{d y}{d x}=\frac{1}{1+\sqrt{x}} \cdot \frac{1}{2 \sqrt{x}}-\frac{1}{(1-\sqrt{x})}\left(-\frac{1}{2 \sqrt{x}}\right)\)
    \(=\frac{1}{2 \sqrt{x}}\left[\frac{1}{1+\sqrt{x}}+\frac{1}{1-\sqrt{x}}\right]\)
    \(=\frac{1}{2 \sqrt{x}}\left[\frac{1-\sqrt{x}+1+\sqrt{x}}{1-x}\right]\)
    \(=\frac{1}{2 \sqrt{x}} \cdot \frac{2}{(1-x)}=\frac{1}{\sqrt{x}(1-x)}\)
  • Question 9
    1 / -0

    The circumference of a circle exceeds the diameter by 16.8 cm. Find the radius of the circle.

    Solution
    Let the radius of the circle be \(r \mathrm{cm}\). Then,
    Diameter \(=2 r \mathrm{cm} \&\) circumference \(=2 \pi r \mathrm{cm}\)
    It is given that the circumference exceeds
    the diameter by \(16.8 \mathrm{cm}\)
    \(\therefore\) Circumference \(=\) Diameter +16.8 \(\Rightarrow 2 \pi r=2 r+16.8\)
    \(\Rightarrow 2 \times \frac{22}{7} \times r=2 r+16.8\)
    \(\Rightarrow 44 \mathrm{r}=14 \mathrm{r}+16.8 \times 7\)
    \(\Rightarrow 44 \mathrm{r}-14 \mathrm{r}=117.6\)
    \(\Rightarrow 30 \mathrm{r}=117.6\)
    \(\Rightarrow \mathrm{r}=\frac{117.6}{30}=3.92 \mathrm{cm}\)
  • Question 10
    1 / -0

    The barrel of a fountain pen , cylindrical in shape , is 7cm long and 5mm in diameter. A full barrelof ink in the pen will be used up on writing 330 words on an average . How many words would useup a bottle of ink containing one fifth of a litre?

    Solution
    We have,
    \[
    \begin{array}{l}
    \text { Volume of a barrel }=\left(\frac{22}{7} \times 0.25 \times 0.25 \times 7\right) \mathrm{cm}^{3}=1.375 \mathrm{cm}^{3} \\
    \text { Volume of ink in the bottle }=\frac{1}{5} \text { litre }=\frac{1000}{5} \mathrm{cm}^{3}=200 \mathrm{cm}^{3}
    \end{array}
    \]
    \(\therefore\) Total number of barrels that can be filled from the given volume of ink \(=\frac{200}{1.375}\)
    So, required numbers of words \(=\frac{200}{1.375} \times 330=48000\)
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now