Self Studies

Mathematics Test - 28

Result Self Studies

Mathematics Test - 28
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    Four dice (six faced) are rolled. The number of possible outcomes in which atleast one die shows 2 is

    Solution
    Total number of possible outcomes \(=6^{4}\)
    Number of possible outcomes in which 2 does not appear on any dice \(=5^{4}\)
    Required number \(=6^{4}-5^{4}=671\)
  • Question 2
    1 / -0
    Let \(f(x)\) and \(g(x)\) be twice differentiable functions on [0,2] satisfying \(f^{\prime \prime}(x)=g^{\prime \prime}(x), f^{\prime}(1)=4, g^{\prime}(1)=\) \(6, f(2)=3\) and \(\mathrm{g}(2)=9 .\) Then what is \(\mathrm{f}(\mathrm{x})-\mathrm{g}(\mathrm{x})\) at \(\mathrm{x}=4\) equal to?
    Solution
    Given \(f^{\prime \prime}(x)=g^{\prime \prime}(x)\)
    On integrating both sides, we get
    \(f^{\prime}(x)=g^{\prime}(x)+c\)
    \(\Rightarrow f^{\prime}(1)=g^{\prime}(1)+c\)
    \(\Rightarrow 4=6+c\)
    \(\Rightarrow c=-2\)
    \(\therefore f^{\prime}(x)=g^{\prime}(x)-2\)
    Again, on integrating both sides, we get
    \(f(x)=g(x)-2 x+c_{1}\)
     
    \(\Rightarrow \mathrm{f}(2)=\mathrm{g}(2)-2 \times 2+c_{1}\)
    \(\Rightarrow 3=9-4+c_{1}\)
    \(\Rightarrow c_{1}=-2\)
    \(\therefore f(x)-g(x)=-2 x-2\)
    \(\mathrm{At} \mathrm{x}=4\)
    \([\mathrm{f}(\mathrm{x})-\mathrm{g}(\mathrm{x})]=-8-2=-10\)
  • Question 3
    1 / -0
    The range of the function \(f(x)=\frac{1}{(2-\sin 3 x)}\) is
    Solution
    We have, \(2 y-y \sin 3 x=1 \quad[\text { Let } f(x)=y]\)
    \(\Rightarrow \sin 3 x=\frac{(2 y-1)}{y}\)
    since, \(-1 \leq \sin 3 x \leq 1\)
    We have \(-1 \leq \frac{(2 y-1)}{y} \leq 1\)________(1)
    since \(y>0\) multiplying the inequality eq (1) by \(y\), we obtain
    \(-y \leq 2 y-1 \leq y\)
    Or \(1 \leq 3 y\) and \(y \leq 1\)
    \(\Rightarrow \frac{1}{3} \leq y \leq 1\)
  • Question 4
    1 / -0
    If \(\mathrm{A} \& \mathrm{B}\) are two symmetric matrices of same order, then \((A B A)^{r}\) is
    Solution

    If A and B are symmetric matrices,then (ABA)ris also a symmetric matric.Symmetric matrix

  • Question 5
    1 / -0

    The arithmetic mean of 1, 8, 27, 64 …… upto n terms is given by

    Solution
    Given, \(1,8,27,64,-\dots-\) upto n terms \(=1^{3}, 2^{3}, 3^{3}, 4^{3}, \dots-\) upto \(n\) terms
    \[
    \begin{array}{l}
    \therefore A M=\frac{1^{2}+2^{2}+3^{3}+4^{3}+---+n^{3}}{n}=\frac{\left[\frac{n(n+1)}{2}\right]^{2}}{n}=\frac{n^{2}(n+1)^{2}}{4 n} \\
    =\frac{n(n+1)^{2}}{4}
    \end{array}
    \]
  • Question 6
    1 / -0
    If sum of the squares of zeros of the quadratic polynomial \(f(x)=x^{2}-8 x+k\) is \(40,\) find the value of \(k\)
    Solution
    Let \(\alpha, \beta\) be the zeros of the polynomial
    \(f(x)=x^{2}-8 x+k\). Then
    \(\alpha+\beta=-\left(\frac{-8}{1}\right)=8\) and \(\alpha \beta=\frac{k}{1}=k\)
    It is given that
    \(\alpha^{2}+\beta^{2}=40\)
    \(\Rightarrow(\alpha+\beta)^{2}-2 \alpha \beta=40\)
    \(\Rightarrow 8^{2}-2 k=40[\because \alpha+\beta=8 \text { and } \alpha \beta=k]\)
    \(\Rightarrow 2 \mathrm{k}=64-40\)
    \(\Rightarrow 2 \mathrm{k}=24\)
    \(\Rightarrow \mathrm{k}=12\)
  • Question 7
    1 / -0
    If \(\frac{1}{\log _{a} x}+\frac{1}{\log _{c} x}=\frac{2}{\log _{b} x}\), then \(a, b\) and \(c\) are in
    Solution
    \(\log _{x} a+\log _{x} c=2 \log _{x} b\)
    \(\Rightarrow \mathrm{ac}=\mathrm{b}^{2}\) i.e. \(\mathrm{a}, \mathrm{b} \& \mathrm{c}\) are in GP.
  • Question 8
    1 / -0
    If \(A=\left[\begin{array}{ll}2 & 7 \\ 1 & 5\end{array}\right],\) then what is \(A+3 A^{-1}\) equal to?
    Solution
    We have, \(A=\left[\begin{array}{ll}2 & 7 \\ 1 & 5\end{array}\right]\)
    \(\Rightarrow|A|=10-7=3\)
    Now \(A^{-1}=\frac{1}{|A|}\) adj \((A)=\frac{1}{3}\left[\begin{array}{cr}5 & -7 \\ -1 & 2\end{array}\right]\)
    \(\therefore A+3 A^{-1}=\left[\begin{array}{ll}2 & 7 \\ 1 & 5\end{array}\right]+3 \times \frac{1}{3}\left[\begin{array}{cc}5 & -7 \\ -1 & 2\end{array}\right]\)
    \(=\left[\begin{array}{ll}7 & 0 \\ 0 & 7\end{array}\right]=7 I\)
  • Question 9
    1 / -0
    If \(\tan ^{-1} 2 x+\tan ^{-1} 3 x=\frac{\pi}{4},\) then \(x\) is equal to
    Solution
    \(\tan ^{-1} 2 x+\tan ^{-1} 3 x=\frac{\pi}{4}\)
    \(\tan ^{-1}\left(\frac{2 x+3 x}{1-2 x \times 3 x}\right)=\frac{\pi}{4}\)
    \(\tan ^{-1}\left(\frac{5 x}{1-6 x^{2}}\right)=\tan ^{-1}(1)\)
    \(\frac{5 x}{1-6 x^{2}}=1\)
    \(\Rightarrow 6 x^{2}+5 x-1=0\)
    \(\Rightarrow x=-1, \frac{1}{6}\)
    But, -1 does not hold.
  • Question 10
    1 / -0

    Find a quadratic polynomial, the sum & product of whose zeroes are –3 & 2, respectively.

    Solution
    We have \(\alpha+\beta=-3=\frac{-b}{a}\)
    \(\alpha \beta=2=\frac{c}{a}\)
    If \(a=1\) then \(b=3 \& c=2\) So, one quadratic polynomial which fits the given conditions is \(x^{2}+3 x+2\)
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now