Self Studies

Mathematics Test - 29

Result Self Studies

Mathematics Test - 29
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The function \(f(x)=\log (x+\sqrt{x^{2}+1})\) is
    Solution
    \(f(-x)=\log [-x+\sqrt{1+x^{2}}]\)
    \(f(x)+f(-x)=\log [x+\sqrt{1+x^{2}}]+\log [-x+\sqrt{1+x^{2}}]\)
    \(=\log \left[1+x^{2}-x^{2}\right]=\log 1=0\)
    \(\therefore f(-x)=-f(+x)\)
    So, \(f(x)\) is an odd function of \(x\)
  • Question 2
    1 / -0

    For what value of p are 2p+1, 13, 5P–3 are three consecutive terms of an A.P?

    Solution
    \(13-2 p+1=5 p-3-13\)
    \(12-2 p=5 p-16\)
    \(28=7 p\)
    \(p=4\)
  • Question 3
    1 / -0
    What is \(\int_{0}^{2} \frac{d x}{x^{2}+4}\) equal to?
    Solution
    Let \(I=\int_{0}^{2} \frac{d x}{x^{2}+4}\)
    \(\left[\because \int \frac{d x}{x^{2}+a^{2}}=\frac{1}{a} \tan ^{-1} \frac{x}{a}\right]\)
    \(=\left[\frac{1}{2} \tan ^{-1} \frac{x}{2}\right]_{0}^{2}=\frac{1}{2}\left(\frac{\pi}{4}-0\right)=\frac{\pi}{8}\)
  • Question 4
    1 / -0

    A (3, 4) and B (5, –2) are two points and P is a point such that PA = PB. If the area of ∆ PAB is 10 sq units, then what are the coordinates of P?

    Solution
    We have \(A(3,4)\) and \(B(5,-2)\) Let \(\mathrm{P}(\mathrm{x}, \mathrm{y})\)
    Given that \(\mathrm{PA}=\mathrm{PB}\)
    \[
    \Rightarrow P A^{2}=P B^{2}
    \]
    \(\therefore(x-3)^{2}+(y-4)^{2}=(x-5)^{2}+(y+2)^{2}\)
    \[
    \Rightarrow x-3 y=1
    \]
    Area of \(\Delta P A B=10\)
    \[
    \begin{array}{l}
    \therefore \frac{1}{2}\left|\begin{array}{ccc}
    x & y & 1 \\
    3 & 4 & 1 \\
    5 & -2 & 1
    \end{array}\right|=\pm 10 \\
    \Rightarrow \\
    \Rightarrow(4+2)-y(3-5)+1(-6-20)=\pm 20 \\
    \Rightarrow 6 x+2 y-26=\pm 20 \\
    \Rightarrow \quad 6 x+2 y=46 \\
    \quad \text { Or } 6 x+2 y=6
    \end{array}
    \]
    On solving eq (1) \& (2), we get
    \[
    x=7, y=2
    \]
    Similarly, solving eq(1) \& (3) we get
    \[
    x=1, y=0
    \]
    Hence coordinates of \(\mathrm{P}\) are (7,2) or (1,0)
  • Question 5
    1 / -0
    The degree and order respectively of the differential equation \(\frac{d y}{d x}=\frac{1}{x+y+1}\) are
    Solution

    Since order of the highest derivative in the given diff. equation is 1 and exponent of the derivative is also is (1,1)

  • Question 6
    1 / -0
    If \(\left|\begin{array}{ccc}x^{2}+2 x & 2 x+1 & 1 \\ 2 x+1 & x+2 & 1 \\ 3 & 3 & 1\end{array}\right|=(x-1)^{k},\) then \(\mathrm{k}\) equals to
    Solution
    Applying \(R_{1} \rightarrow R_{1}-R_{2}\) and \(R_{2} \rightarrow R_{2}-R_{3}\) and taking \((\mathrm{x}-1)\) common from \(R_{1} \& R_{2}\) we get \(\Delta=(x-1)^{2}\left|\begin{array}{ccc}x+1 & 1 & 0 \\ 2 & 1 & 0 \\ 3 & 3 & 1\end{array}\right|=(x-1)^{3}\)
    \(\therefore \mathrm{k}=3\)
  • Question 7
    1 / -0

    The middle point of the segment of the straight line joining the points (p,q) and (q,–p) isr2,s2 What is the length of the segment?

    Solution
    Mid point of \((p, q)\) and \((q,-p)\) is \(\left(\frac{p+q}{2}, \frac{q-p}{2}\right) .\) Which is given \(\left(\frac{r}{2}, \frac{s}{2}\right)\)
    \[
    \therefore \frac{p+q}{2}=\frac{r}{2} \Rightarrow p+q=r
    \]
    And \(\frac{q-p}{2}=\frac{s}{2} \Rightarrow q-p=s\)
    Now length of segment
    \[
    =\sqrt{(p-q)^{2}+(q+p)^{2}}=\sqrt{s^{2}+r^{2}}
    \]
  • Question 8
    1 / -0
    If \(\int_{-2}^{5} f(x) d x=4\) and \(\int_{0}^{5}\{1+f(x)\} d x=7,\) then what is \(\int_{-2}^{0} f(x) d(x)\) equal to?
    Solution
    Given, \(\int_{-2}^{5} \mathrm{f}(\mathrm{x}) \mathrm{dx}=4, \int_{0}^{5}\{1+\mathrm{f}(\mathrm{x})\} \mathrm{d} \mathrm{x}=7\)
    Let \(\mathrm{I}=\int_{-2}^{5} \mathrm{f}(\mathrm{x}) \mathrm{d} \mathrm{x}=\int_{-2}^{0} \mathrm{f}(\mathrm{x}) \mathrm{dx}+\int_{0}^{5} f(x) \mathrm{dx}\)
    \(\Rightarrow 4=\int_{-2}^{0} \mathrm{f}(\mathrm{x}) \mathrm{dx}+\int_{0}^{5}[1+\mathrm{f}(\mathrm{x})-1] \mathrm{d} \mathrm{x}\)
    \(\Rightarrow 4=\int_{-2}^{0} f(x) d x+\int_{0}^{5}[1+\mathrm{f}(\mathrm{x})] \mathrm{d} \mathrm{x}-\int_{0}^{5} 1 \mathrm{dx}\)
    \(\Rightarrow 4=\int_{-2}^{0} \mathrm{f}(\mathrm{x}) \mathrm{dx}+7-[x]_{0}^{5}\)
    \(\Rightarrow \int_{-2}^{0} f(x) \mathrm{dx}=2\)
  • Question 9
    1 / -0

    Equation of the curve passing through (3, 9) which satisfies the differential equation

    \(\frac{d y}{d x}=x+\frac{1}{x^{2}}\) is
    Solution
    Given \(\frac{d y}{d x}=x+\frac{1}{x^{2}}\)
    \(y=\frac{x^{2}}{2}-\frac{1}{x}+c\)
    (I) [integrating]
    where \(c=\frac{29}{6}\) as it passes through the point (3,9)
    Put \(c=\frac{29}{6}\) in eq
     
    \(Y=\frac{x^{2}}{2}-\frac{1}{x}+\frac{29}{6}\)
    \(\Rightarrow 6 x y=3 x^{2}-6+29 x\)
    \(6 x y=3 x^{2}-6+29 x\)
    \(6 x y=3 x^{2}+29 x-6\)
  • Question 10
    1 / -0

    A man goes 10m due east and then 24m due north. Find the distance from the starting point.

    Solution

    Let the initial position of the man be O and his final position be B. Since the man goes 10m due east and then 24m due north. Therefore, ∆AOB is a light angled at A s.t OA = 10m & AB = 24m.

    By Pythagoras theorem we have,\

    \(\mathrm{OB}^{2}=\mathrm{OA}^{2}+\mathrm{AB}^{2}\)
    \(\Rightarrow \mathrm{OB}^{2}=10^{2}+24^{2}=100+576=676\)
    \(\Rightarrow \mathrm{OB}=\sqrt{676}=26 \mathrm{m}\)
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now