Self Studies
Selfstudy
Selfstudy

Mathematics Test - 20

Result Self Studies

Mathematics Test - 20
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    The value ofsin25+sin210+sin215+ ..............+

    sin285+sin290is equal to

    Solution
    Given expression is
    \[
    \sin ^{2} 5^{\circ}+\sin ^{2} 10^{\circ}+\sin ^{2} 15^{\circ}+\ldots \ldots \ldots \ldots . .+\sin ^{2} 85^{\circ}+\sin ^{2} 90^{\circ}
    \]
    We know that \(\sin 90^{\circ}=1\) or \(\sin ^{2} 90^{\circ}=1\)
    Similarly, \(\sin 45^{\circ}=\frac{1}{\sqrt{2}}\) or \(\sin ^{2} 45^{\circ}=\frac{1}{2}\) and the angles are in A.P. of 18 terms We also know that
    \[
    \sin ^{2} 85^{\circ}=\left[\sin \left(90^{\circ}-5^{\circ}\right)\right]^{2}=\cos ^{2} 5^{\circ}
    \]
    Therefore from the complementary rule, we find
    \[
    \sin ^{2} 5^{\circ}+\sin ^{2} 85^{\circ}=\sin ^{2} 5^{\circ}+\cos ^{2} 5^{\circ}=1
    \]
    Therefore,
    \[
    \begin{array}{l}
    \sin ^{2} 5^{\circ}+\sin ^{2} 10^{\circ}+\sin ^{2} 15^{\circ}+\ldots \ldots \ldots \ldots . .+\sin ^{2} 85^{\circ}+\sin ^{2} 90^{\circ} \\
    \qquad=(1+1+1+1+1+1+1+1)+1+\frac{1}{2}=9 \frac{1}{2}
    \end{array}
    \]
  • Question 2
    1 / -0
    If \(\int \frac{\left(x^{2}+1\right)\left(x^{2}+4\right)}{\left(x^{2}+3\right)\left(x^{2}-5\right)} d x=\int\left\{1+\frac{f(x)}{\left(x^{2}+3\right)\left(x^{2}-5\right)}\right\} d x\)
    \(x+A \tan ^{-1}\left(\frac{x}{A^{\prime}}\right)+B \log \left(\frac{x-l}{x+m}\right)+K \quad\) then which of the following is correct
    Solution
    \(=\int 1+\frac{7 x^{2}+19}{\left(x^{2}+3\right)\left(x^{2}-5\right)} d x=\int\left(1+\frac{1}{4\left(x^{2}+3\right)}+\frac{27}{4} \frac{1}{x^{2}-5}\right) d x\)
    \(\therefore \int \frac{\left(x^{2}+1\right)\left(x^{2}+4\right)}{\left(x^{2}+3\right)\left(x^{2}-5\right)} d x=x+\frac{1}{4 \sqrt{3}} \tan ^{-1}\left(\frac{x}{\sqrt{3}}\right)+\frac{27}{8 \sqrt{5}} \log \left(\frac{x-\sqrt{5}}{x+\sqrt{5}}\right)+K\)
    \(\therefore \int \frac{\left(x^{2}+1\right)\left(x^{2}+4\right)}{\left(x^{2}+3\right)\left(x^{2}-5\right)} d x=L x+A \tan ^{-1}\left(\frac{x}{A^{\prime}}\right)+B \log \left(\frac{x-l}{x+m}\right)+K\)
    \(\therefore L=1, A=\frac{1}{4 \sqrt{3}}, A^{\prime}=\sqrt{3}, B=\frac{27}{8 \sqrt{5}}, K \in R\)
    \(l=m=\sqrt{5} ; \quad f(x)=7 x^{2}+19\)
  • Question 3
    1 / -0
    If \(\log _{\frac{1}{\sqrt{2}}} \sin x>0, x \epsilon[0,4 \pi]\) then the number of values of \(x\) which are integral
    multiples of \(\frac{\pi}{4}\) is
    Solution
    Solution \(0<\frac{1}{\sqrt{2}}<1\)
     
    \[
    \log _{\frac{1}{\sqrt{2}}} \sin x>0, x \epsilon[0,4 \pi] \Rightarrow 0<\sin x<1
    \]
    \(\therefore\) Integral multiple of \(\frac{\pi}{4}\) will be \(\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{9 \pi}{4}, \frac{11 \pi}{4}\)
    Number of required values \(=4\)
  • Question 4
    1 / -0

    The values of x and y for which the numbers 3+ ix2y andx2+y+ 4i are conjugate complex are

    Solution
    According to condition, \(3-i x^{2} y=x^{2}+y+4 i\)
    \[
    \begin{array}{l}
    \Rightarrow x^{2}+y=3 \text { And } x^{2} y=-4 \Rightarrow x=\pm 2, y=-1 \\
    \Rightarrow(x, y)=(2,-1) \text { or }(-2,-1)
    \end{array}
    \]
  • Question 5
    1 / -0

    If the sum of the n terms of G.P. is S product is P and sum of their inverse is R, than P2 is equal to

    Solution

  • Question 6
    1 / -0

    The odds in favour of A solving a problem are 3 to 4 and the odds  against B solving the same problem are 5 to 7.  If they  both try the problem, the probability that the problem is solved is:

  • Question 7
    1 / -0
    The value \(\operatorname{lt} \sum_{n \rightarrow \infty} \sum_{r=0}^{r-n} \frac{^{n} C_{r}}{(r+3)}\) is
    Solution
    \(\because \int_{0}^{1} x^{r+2} d x=\frac{1}{r+3}\)
    \(\therefore \operatorname{lt}_{n \rightarrow \infty} \sum_{r=0}^{r=n} C_{r} \frac{1}{n^{r}} \int_{0}^{1} x^{r+2} d x\)
    \(\left.=\int_{0}^{1} x^{2}\left\{\left(\begin{array}{c}l t \sum_{n \rightarrow \infty}^{r-n} n \\ r=0\end{array}\right) r\left(\frac{x}{n}\right)^{r}\right)\right\} d x\)
    \(=\int_{0}^{1} x^{2}\left(\begin{array}{c}\left.l t\left(1+\frac{x}{n}\right)^{n}\right) d x=\int_{0}^{1} x^{2} e^{x} d x \\ =\left[e^{x}\left(x^{2}-2 x+2\right)\right]_{0}^{1}=e-2\end{array}\right.\)
  • Question 8
    1 / -0

    If sinθ, cosθ and tanθ are in G.P. then cot6θ − cot2θ is

    Solution
    Given that \(\sin \theta, \cos \theta\) and \(\tan \theta\) are in G.P
    So, we have
    \[
    \begin{array}{l}
    \cos ^{2} \theta=\tan \theta \sin \theta \\
    \Rightarrow \cos ^{3} \theta=\sin ^{2} \theta \ldots .(i)
    \end{array}
    \]
    Now, \(\cot ^{6} \theta-\cot ^{2} \theta\)
    \[
    \begin{array}{l}
    =\cot ^{2} \theta\left(\cot ^{4} \theta-1\right) \\
    =\frac{\cos ^{2} \theta}{\sin ^{2} \theta}\left(\frac{\cos ^{4} \theta}{\sin ^{4} \theta}-1\right) \\
    =\frac{\cos ^{2} \theta}{\cos ^{3} \theta}\left(\frac{\cos ^{4} \theta}{\cos ^{6} \theta}-1\right) \ldots \ldots \text { From }(i) \\
    =\frac{1}{\cos \theta} \frac{\sin ^{2} \theta}{\cos ^{2} \theta} \\
    =\frac{\cos ^{3} \theta}{\cos ^{3} \theta} \\
    =1
    \end{array}
    \]
  • Question 9
    1 / -0

    The value of \(4+5\left(-\frac{1}{2}+i \frac{\sqrt{3}}{2}\right)^{334}+3\left(-\frac{1}{2}-i \frac{\sqrt{3}}{2}\right)^{335}\) is

    Solution
    \[
    \begin{array}{l}
    4+5\left(-\frac{1}{2}+i \frac{\sqrt{3}}{2}\right)^{334}+3\left(-\frac{1}{2}-i \frac{\sqrt{3}}{2}\right)^{335} \\
    =4+5 \omega^{334}+3 \omega^{670}\left(\omega^{2}=-\frac{1}{2}-\frac{i \sqrt{3}}{2}\right) \\
    =4+5 \omega+3 \omega=4+9 \omega \\
    =4+8\left(-\frac{1}{2}+\frac{i \sqrt{3}}{2}\right)=4 \sqrt{3} i
    \end{array}
    \]
    Hence choice (c) is correct.
  • Question 10
    1 / -0

    The degree and order respectively of the differential equation of all the parabolas whose axis is x-axis, are

    Solution
    Equation of all parabolas whose axis is x-axis are \(y^{2}=4 a(x+c)\) Differentiating w.r.t \(x\) we get \(2 y y^{\prime}=4 a\) Again differentiating we get \(2\left(y y^{\prime}+y^{\prime} y^{\prime}\right)=0\) \(\Rightarrow 2 y y^{\prime \prime}+2\left(y^{\prime}\right)^{2}=0\)
    \(\therefore\) degree is the natural power on highest order differential coefficient \(=1\) Order is the highest order differential coefficient \(=2\)
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now