Self Studies

Mathematics Test - 17

Result Self Studies

Mathematics Test - 17
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    \(\left(\frac{\tan 25^{\circ}}{\operatorname{cosec} 65^{\circ}}\right)^{2}+\left(\frac{\cot 25^{\circ}}{\sec 65^{\circ}}\right)^{2}=\)
    Solution
    \(\left(\frac{\tan 25^{\circ}}{\operatorname{cosec} 65^{\circ}}\right)^{2}+\left(\frac{\cot 25^{\circ}}{\sec 65^{\circ}}\right)^{2}\)
    \(=\left(\tan 25^{\circ} \cdot \frac{1}{\operatorname{cosec} 65^{\circ}}\right)^{2}+\left(\cot 25^{\circ} \cdot \frac{1}{\sec 65^{\circ}}\right)^{2}\)
    \(=\left(\frac{\sin 25^{\circ}}{\cos 25^{\circ}} \cdot \sin 65^{\circ}\right)^{2}+\left(\frac{\cos 25^{\circ}}{\sin 25^{\circ}} \cdot \cos 65^{\circ}\right)^{2}\)
    \(=\left(\frac{\sin 25^{\circ}}{\cos 25^{\circ}} \cdot \cos 25^{\circ}\right)^{2}+\left(\frac{\cos 25^{\circ}}{\sin 25^{\circ}} \cdot \sin 25^{\circ}\right)^{2}\)
    \(=\sin ^{2} 25^{\circ}+\cos ^{2} 25^{\circ}=1,\) Pythagorean identity
    Hence, the correct option is A.
  • Question 2
    1 / -0

    A circle is drawn in a sector of a larger circle of radius r as shown in figure. The smaller circle is tangent to the two bounding radii and the arc of the sector. The radius of the small circle is

    Solution

     

    From the given figure. Radius of the larger circle \(=A C=r\) Radius of the smaller circle \(=O B=B C=R\) \(A B=A C-B C=r-R\)
    \(\angle O A B=\frac{\angle O A D}{2}=30\)
    In right angled triangle \(\mathrm{ABO} \sin (\angle O A B)=\frac{O B}{A B}\)
    \(\sin 30^{\circ}=\frac{R}{r-R}\)
    \(\Rightarrow R=\frac{r}{3}\)
    Hence, the correct option is B.
  • Question 3
    1 / -0

    A wheel makes 240 revolutions in one minute The measure of the angle it describes at the centre in 15 seconds is,

    Solution
    In 60 seconds, 240 revolutions are made This means, in 15 seconds, \(\frac{15 \times 240}{60}=60\) revolutions are made.
    In one revolution, angle described at centre \(=2 \pi\) \(\Rightarrow\) In 60 revolutions, angle described at centre \(=60 \times 2 \pi=120 \pi\)
    Hence, the correct option is B.
  • Question 4
    1 / -0

    Find the value of \(\frac{\left(\sin ^{2} 22^{\circ}+\sin ^{2} 68^{\circ}\right)}{\left(\cos ^{2} 22^{\circ}+\cos ^{2} 68^{\circ}\right)}+\sin ^{2} 63^{\circ}+\cos 63^{\circ} \sin 27^{\circ}=\)

    Solution
    Given \(\frac{\left(\sin ^{2} 22^{\circ}+\sin ^{2} 68^{\circ}\right)}{\left(\cos ^{2} 22^{\circ}+\cos ^{2} 68^{\circ}\right)}+\sin ^{2} 63^{\circ}+\cos 63^{\circ} \sin 27^{\circ}\)
    \(=\frac{\sin ^{2} 22^{\circ}+\sin ^{2}\left(90^{\circ}-22^{\circ}\right)}{\cos ^{2} 22^{\circ}+\cos ^{2}\left(90^{\circ}-22^{\circ}\right)}+\sin ^{2} 63^{\circ}+\cos 63^{\circ} \times \sin \left(90^{\circ}-63^{\circ}\right)\)
    \(=\frac{\sin ^{2} 22^{\circ}+\cos ^{2} 22^{\circ}}{\cos ^{2} 22^{\circ}+\sin ^{2} 22^{\circ}}+\sin ^{2} 63^{\circ}+\cos 63^{\circ} \times \cos 63^{\circ}\)
    (as we know \(\sin \left(90^{\circ}-\theta\right)=\cos \theta\) and \(\left.\cos \left(90^{\circ}-\theta\right)=\sin \theta\right)\)
    \(=\frac{1}{1}+\sin ^{2} 63^{\circ}+\cos ^{2} 63^{\circ}\)
    \(=1+1\)
    \(=2\)
    Hence, the correct option is C.
  • Question 5
    1 / -0

    Find the value of \(\sin \theta,\) if \(\tan \theta=\frac{3}{4}\) and \(180^{\circ}<\theta<270^{\circ}\)

    Solution
    \(1+\tan ^{2} \theta=\sec ^{2} \theta\)
    Hence \(\sec ^{2} \theta=1+\frac{9}{16}=\frac{16+9}{16}=\frac{25}{16}\)
    Hence sec \(\theta=\frac{-5}{4}\) since \(\theta\) is in \(3^{\text {rd }}\) quadrant and in \(3^{r d}\) quadrant only tan and cot are positive. Therefore \(\cos \theta=\frac{-4}{5}\)
    Hence \(\sin \theta=-\sqrt{1-\cos ^{2} \theta}\)
    \(=-\sqrt{1-\frac{16}{25}}\)
    \(=-\sqrt{\frac{25-16}{25}}\)
    \(=-\sqrt{\frac{9}{25}}\)
    \(=\frac{-3}{5}\)
    Hence, the correct option is D.
  • Question 6
    1 / -0

    In a triangle ABC, angle A is greater than B. If the measure of angles A and B satisfy the equation 3sinx−4sin3x−k=0,0

    Solution
    We have the expression \(3 \sin x-4 \sin ^{3} x-k=0 \Rightarrow \sin 3 x-k=0\)
    since, \(A\) and \(B\) satisfy (1), therefore \(\sin 3 A-k=0 ; \sin 3 B-k=0 \Rightarrow \sin 3 A=\sin 3 B\)
    since \(A>B\), therefore \(\sin 3 A=\sin 3 B \Rightarrow 3 A=180^{\circ}-3 B\)
    \(\Rightarrow 3 A+3 B=180^{\circ} \Rightarrow A+B=60^{\circ}\)
    \(\Rightarrow 180^{\circ}-C=60^{\circ} \Rightarrow C=120^{\circ}=\frac{2 \pi}{3}\)
    Hence, the correct option is C.
  • Question 7
    1 / -0

    If sinθ+cosecθ=2, then [sin8θ+cosec8θ] will have the value of

    Solution
    Given, \(\sin \theta+\operatorname{cosec} \theta=2\)
    On squaring both sides, we get, \((\sin \theta+\operatorname{cosec} \theta)^{2}=2^{2}\)
    \(\Rightarrow \sin ^{2} \theta+\operatorname{cosec}^{2} \theta+2 \sin \theta \operatorname{cosec} \theta=4\)
    \(\Rightarrow \sin ^{2} \theta+\operatorname{cosec}^{2} \theta+2=4\)
    \(\because \sin \theta \operatorname{cosec} \theta=1)\)
    \(\Rightarrow \sin ^{2} \theta+\operatorname{cosec}^{2} \theta=2\)
    Again, On squaring both sides, we get, \(\sin ^{4} \theta+\operatorname{cosec}^{4} \theta+2 \sin ^{2} \theta \operatorname{cosec}^{2} \theta=4\)
    \(\Rightarrow \sin ^{4} \theta+\operatorname{cosec}^{4} \theta+2=4\)
    \(\Rightarrow \sin ^{4} \theta+\operatorname{cosec}^{4} \theta=2\)
    Again, squaring both sides. \(\Rightarrow \sin ^{8} \theta+\operatorname{cosec}^{8} \theta+2 \sin ^{4} \theta \operatorname{cosec}^{4} \theta=4\)
    \(\Rightarrow \sin ^{8} \theta+\operatorname{cosec}^{8} \theta+2=4\)
    \(\Rightarrow \sin ^{8} \theta+\operatorname{cosec}^{8} \theta=2\)
    Hence, the correct option is A.
  • Question 8
    1 / -0

    If acosθ+bsinθ=m and asinθ−bcosθ=n, then the value of a2+b2 is,

    Solution
    \(a \cos \theta+b \sin \theta=m\)
    \(a \sin \theta-b \cos \theta=n \quad \ldots(2)\)
    Squaring (1) and (2), we get \(a^{2} \cos ^{2} \theta+b^{2} \sin ^{2} \theta+2 a b \sin \theta \cos \theta=m^{2}\)
    \(-(3)\)
    and \(a^{2} \sin ^{2} \theta+b^{2} \cos ^{2} \theta-2 a b \sin \theta \cos \theta=n^{2}\)
    (4)
    Adding (3) and (4)
    \(a^{2}\left(\sin ^{2} \theta+\cos ^{2} \theta\right)+b^{2}\left(\sin ^{2} \theta+\cos ^{2} \theta\right)=m^{2}+n^{2}\)
    or \(a^{2}+b^{2}=m^{2}+n^{2}\)
    Hence, the correct option is D.
  • Question 9
    1 / -0
    If \(\phi\) is an acute angle such that \(\tan \phi=\frac{2}{3},\) then evaluate
    $$
    \left(\frac{1+\tan \phi}{\sin \phi+\cos \phi}\right)\left(\frac{1-\cot \phi}{\sec \phi+\operatorname{cosec} \phi}\right)
    $$
    Solution
    Given \(: \tan \phi=\frac{2}{3}\)
    Consider, \(\left(\frac{1+\tan \phi}{\sin \phi+\cos \phi}\right)\left(\frac{1-\cot \phi}{\sec \phi+\operatorname{cosec} \phi}\right)\)
    \(=\left(\frac{1+\tan \phi}{\sin \phi+\cos \phi}\right)\left(\frac{1-\frac{1}{\tan \phi}}{\frac{1}{\cos \phi}+\frac{1}{\sin \phi}}\right)\)
    \(=-\left(\frac{(1+\tan \phi)(1-\tan \phi)}{\left(\frac{\sin \phi}{\cos \phi}+\frac{\cos \phi}{\sin \phi}+1+1\right) \tan \phi}\right)\)
    \(=-\left(\frac{(1+\tan \phi)(1-\tan \phi)}{\left(\tan \phi+\frac{1}{\tan \phi}+2\right) \tan \phi}\right)\)
    \(=-\left(\frac{(1+\tan \phi)(1-\tan \phi)}{\frac{(\tan \phi+1)^{2}}{\tan \phi} \tan \phi}\right)\)
    \(=-\frac{(1-\tan \phi)}{(\tan \phi+1)}\)
    \(=-\frac{\frac{2}{3}-1}{\frac{2}{3}+1}\)
    =-1/5
    Hence, the correct option is A.
  • Question 10
    1 / -0
    Find the value of:
    \(\sin ^{2} 30 \cos ^{2} 45+4 \tan ^{2} 30+\frac{1}{2} \sin ^{2} 90+\frac{1}{2} \cot ^{2} 60\)
    Solution
    \(\sin ^{2} 30 \cos ^{2} 45+4 \tan ^{2} 30+\frac{1}{2} \sin ^{2} 90+\frac{1}{2} \cot ^{2} 60\)
    \(=\left(\frac{1}{2}\right)^{2} \times\left(\frac{1}{\sqrt{2}}\right)^{2}+4 \times\left(\frac{1}{\sqrt{3}}\right)^{2}+\frac{1}{2} \times(1)^{2}+\frac{1}{2} \times\left(\frac{1}{\sqrt{3}}\right)^{2}\)
    \(=\frac{1}{4} \times \frac{1}{2}+4 \times \frac{1}{3}+\frac{1}{2}+\frac{1}{2} \times \frac{1}{3}\)
    \(=\frac{1}{8}+\frac{4}{3}+\frac{1}{2}+\frac{1}{6}\)
    \(=\frac{3+32+12+4}{24}\)
    \(=\frac{17}{8}\)
    Hence, the correct option is D.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now