Self Studies

Mathematics Tes...

TIME LEFT -
  • Question 1
    1 / -0

    \(\left(\frac{\tan 25^{\circ}}{\operatorname{cosec} 65^{\circ}}\right)^{2}+\left(\frac{\cot 25^{\circ}}{\sec 65^{\circ}}\right)^{2}=\)

  • Question 2
    1 / -0

    A circle is drawn in a sector of a larger circle of radius r as shown in figure. The smaller circle is tangent to the two bounding radii and the arc of the sector. The radius of the small circle is

  • Question 3
    1 / -0

    A wheel makes 240 revolutions in one minute The measure of the angle it describes at the centre in 15 seconds is,

  • Question 4
    1 / -0

    Find the value of \(\frac{\left(\sin ^{2} 22^{\circ}+\sin ^{2} 68^{\circ}\right)}{\left(\cos ^{2} 22^{\circ}+\cos ^{2} 68^{\circ}\right)}+\sin ^{2} 63^{\circ}+\cos 63^{\circ} \sin 27^{\circ}=\)

  • Question 5
    1 / -0

    Find the value of \(\sin \theta,\) if \(\tan \theta=\frac{3}{4}\) and \(180^{\circ}<\theta<270^{\circ}\)

  • Question 6
    1 / -0

    In a triangle ABC, angle A is greater than B. If the measure of angles A and B satisfy the equation 3sinx−4sin3x−k=0,0

  • Question 7
    1 / -0

    If sinθ+cosecθ=2, then [sin8θ+cosec8θ] will have the value of

  • Question 8
    1 / -0

    If acosθ+bsinθ=m and asinθ−bcosθ=n, then the value of a2+b2 is,

  • Question 9
    1 / -0

    If \(\phi\) is an acute angle such that \(\tan \phi=\frac{2}{3},\) then evaluate
    $$
    \left(\frac{1+\tan \phi}{\sin \phi+\cos \phi}\right)\left(\frac{1-\cot \phi}{\sec \phi+\operatorname{cosec} \phi}\right)
    $$

  • Question 10
    1 / -0

    Find the value of:
    \(\sin ^{2} 30 \cos ^{2} 45+4 \tan ^{2} 30+\frac{1}{2} \sin ^{2} 90+\frac{1}{2} \cot ^{2} 60\)

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now