Self Studies

Mathematics Test - 31

Result Self Studies

Mathematics Test - 31
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    The interval on which f(x)=1−x√2 is continuous is:

    Solution

    The function will be continuous on an interval where it is completely defined.

    Since, we know, a negative quantity cannot go inside the square root sign,

    Hence, 1−x2>=0

    Or,

    x2<=1

    Hence, the function is continuous for all x lying between [−1,1]
    Hence, the correct option is (C)

  • Question 2
    1 / -0

    The value of \(\lim _{x \rightarrow 0} \frac{\cos (\sin x)-\cos x}{x^{4}}\) is equal to

    Solution
    \(\lim _{x \rightarrow 0} \frac{\cos (\sin x)-\cos x}{x^{4}}\)
    \(=\lim _{x \rightarrow 0} \frac{2 \sin \left(\frac{x+\sin x}{2}\right) \sin \left(\frac{x-\sin x}{2}\right)}{x^{4}}\)
    As \(x \rightarrow 0 \Rightarrow \sin x \rightarrow 0\)
    \(=\lim _{x \rightarrow 0}\left(\frac{x+\sin x}{2}\right)\left(\frac{x-\sin x}{2}\right) \frac{2 \sin \left(\frac{x+\sin x}{2}\right) \sin \left(\frac{x-\sin x}{2}\right)}{x^{4}\left(\frac{x+\sin x}{2}\right)\left(\frac{x-\sin x}{2}\right)}\)
    \(=\lim _{x \rightarrow 0} \frac{x^{2}-\sin ^{2} x}{2 x^{4}}\)
    It is of the form \(\frac{0}{0},\) so applying L-Hospitals' rule
    \(=\lim _{x \rightarrow 0} \frac{2 x-2 \sin x \cos x}{8 x^{3}}\)
    \(=\lim _{x \rightarrow 0} \frac{2 x-\sin 2 x}{8 x^{3}}\)
    Again applying L-Hospital's rule \(=\lim _{x \rightarrow 0} \frac{2-2 \cos 2 x}{24 x^{2}}\)
    Again applying L-Hospital's rule \(=\lim _{x \rightarrow 0} \frac{4 \sin 2 x}{48 x}\)
    Again applying L-Hospital's rule \(=\lim _{x \rightarrow 0} \frac{8 \cos 2 x}{48}\)
    \(=\frac{1}{6}\)
    Hence, the correct option is (B)
  • Question 3
    1 / -0

    If \(A=\tan ^{-1}\left(\frac{x \sqrt{3}}{2 K-x}\right)\) and \(B=\tan ^{-1}\left(\frac{2 x-K}{K \sqrt{3}}\right),\) then the value of \(A-B\) is

    Solution
    In the above question, if we carefully observe, we can see some symmetry in A and
    B. Hence we substitute \(k=x\) Therefore \(A=\tan ^{-1}(\sqrt{3})=60^{\circ}\)
    \(B=\tan ^{-1}\left(\frac{1}{\sqrt{3}}\right)=30^{\circ}\)
    Hence \(A-B\) \(=60^{\circ}-30^{\circ}\)
    \(=30^{\circ}\)
    Hence, the correct option is (D)
  • Question 4
    1 / -0
    The value of \(\lim _{\alpha \rightarrow \beta}\left[\frac{\sin ^{2} \alpha-\sin ^{2} \beta}{\alpha^{2}-\beta^{2}}\right]\) is:
    Solution
    \(\lim _{\alpha \rightarrow \beta}\left[\frac{\sin ^{2} \alpha-\sin ^{2} \beta}{\alpha^{2}-\beta^{2}}\right]=\lim _{\alpha \rightarrow \beta}\left[\frac{\sin (\alpha-\beta) \sin (\alpha+\beta)}{(\alpha-\beta)(\alpha+\beta)}\right]\)
    \(=\lim _{\alpha \rightarrow \beta}\left[\frac{\sin (\alpha-\beta)}{(\alpha-\beta)}\right] \times \lim _{\alpha \rightarrow \beta}\left[\frac{\sin (\alpha+\beta)}{(\alpha+\beta)}\right]\)
    \(=\lim _{\alpha-\beta \rightarrow 0}\left[\frac{\sin (\alpha-\beta)}{(\alpha-\beta)}\right] \cdot\left(\frac{\sin 2 \beta}{2 \beta}\right) \ldots \ldots[\because \alpha \rightarrow \beta \Longrightarrow \alpha-\beta \rightarrow 0]\)
    \(=1 . \frac{\sin 2 \beta}{2 \beta} \ldots .\left[\because \lim _{x \rightarrow 0} \frac{\sin x}{x}=1\right]\)
    \(=\frac{\sin 2 \beta}{2 \beta}\)
    Hence, the correct option is (D)
  • Question 5
    1 / -0

    \(\lim _{x \rightarrow 0} \frac{\tan x-\sin x}{x^{3}}=\)

    Solution
    \(=\lim _{x \rightarrow 0} \frac{\tan x-\sin x}{x^{3}}\)
    \(=\lim _{x \rightarrow 0} \frac{\sin x(1-\cos x)}{x^{3} \cos x}\)
    \(=\lim _{x \rightarrow 0} \frac{\sin x\left(2 \sin ^{2} \frac{x}{2}\right)}{x^{3} \cos x}\)
    \(=\frac{2}{4}=\frac{1}{2}\)
    Hence, the correct option is (B)
  • Question 6
    1 / -0
    \(\lim _{x \rightarrow 0} \frac{x \tan 2 x-2 x \tan x}{(1-\cos 2 x)^{2}}=\)
    Solution
    \(\lim _{x \rightarrow 0} \frac{x \tan 2 x-2 x \tan x}{(1-\cos 2 x)^{2}}\)
    \(=\lim _{x \rightarrow 0} \frac{x \frac{2 \tan x}{1-\tan ^{2} x}-2 x \tan x}{\left(1-\frac{1-\tan ^{2} x}{1+\tan ^{2} x}\right)^{2}}\)
    \(=\lim _{x \rightarrow 0} \frac{2 x \tan ^{3} x}{4 \tan ^{4} x}\)
    \(=\lim _{x \rightarrow 0} \frac{2 x}{4 \tan x}\)
    \(=\frac{1}{2}\)
    Hence, the correct option is (B)
  • Question 7
    1 / -0
    \(\lim _{x \rightarrow 0} \frac{1-\cos 2 x+\tan ^{2} x}{x \sin x}\)
    Solution
    \(\operatorname{lt} \frac{1-\cos ^{2} x+\tan ^{2} x}{x \sin x}\)
    \(=\lim _{x \rightarrow 0} \frac{2 \sin ^{2} x+\tan ^{2} x}{x \sin x}\)
    \(=\lim _{x \rightarrow 0} \frac{\sin ^{2} x\left(2+\frac{1}{\cos ^{2} x}\right)}{x \sin x}\)
    \(=\operatorname{lt} \frac{\sin x}{x \rightarrow 0} \cdot \operatorname{lt}_{x \rightarrow 0}\left(2+\sec ^{2} x\right)\)
    \(=1\left(2+\sec ^{2} 0\right)=2+1=3\)
    Hence, the correct option is (D)
  • Question 8
    1 / -0
    \(\lim _{x \rightarrow 0} \frac{\sqrt{\cos x}-\sqrt[3]{\cos x}}{\sin ^{2} x}=\)
    Solution
    \(\lim _{x \rightarrow 0} \frac{\sqrt{\cos x}-\sqrt[3]{\cos x}}{\sin ^{2} x}\)
    It is of the form \(\frac{0}{0},\) so using L-Hospital's rule, \(=\lim _{x \rightarrow 0} \frac{\frac{-\sin x}{2 \sqrt{\cos x}}-\frac{-\sin x \cos \frac{-2}{3} x}{3}}{2 \sin x \cos x}\)
    \(=-\frac{1}{12}\)
    Hence, the correct option is (D)
  • Question 9
    1 / -0
    If the function defined by \(f(x)=\frac{\sin 3(x-p)}{\sin 2(x-p)}\) for \(x \neq p\) is continuous at \(x=p\) then \(f(p)=\)
    Solution
    since, it is given the function is continuous at \(x=p,\) we calculate \(\lim _{x \rightarrow p} \frac{\sin 3(x-p)}{\sin 2(x-p)}\)
    \(=\lim _{x \rightarrow p} \frac{\sin 3(x-p)}{3(x-p)} \times \frac{2(x-p)}{\sin 2(x-p)} \times \frac{3}{2}\)
    Using the property of limits, \(f(p)=1 \times 1 \times \frac{3}{2}\)
    Hence, the correct option is (A)
  • Question 10
    1 / -0
    If \(f(x)=x^{2}-3 x+5\), then \(\lim _{x \rightarrow 2} \frac{f(x)-f(2)}{x-2}\)
    Solution
    The above given expression, \(\lim _{x \rightarrow 2} \frac{f(x)-f(2)}{x-2}\) is equivalent to \(f^{\prime}(x)\) at \(x=2\)
    \(f(x)=x^{2}-3 x+5\)
    \(\Rightarrow f^{\prime}(x)=2 x-3\)
    \(\Rightarrow f^{\prime}(2)=2(2)-3\)
    \(=1\)
    Hence, the correct option is (B)
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now