Self Studies

Mathematics Tes...

TIME LEFT -
  • Question 1
    1 / -0

    The interval on which f(x)=1−x√2 is continuous is:

  • Question 2
    1 / -0

    The value of \(\lim _{x \rightarrow 0} \frac{\cos (\sin x)-\cos x}{x^{4}}\) is equal to

  • Question 3
    1 / -0

    If \(A=\tan ^{-1}\left(\frac{x \sqrt{3}}{2 K-x}\right)\) and \(B=\tan ^{-1}\left(\frac{2 x-K}{K \sqrt{3}}\right),\) then the value of \(A-B\) is

  • Question 4
    1 / -0

    The value of \(\lim _{\alpha \rightarrow \beta}\left[\frac{\sin ^{2} \alpha-\sin ^{2} \beta}{\alpha^{2}-\beta^{2}}\right]\) is:

  • Question 5
    1 / -0

    \(\lim _{x \rightarrow 0} \frac{\tan x-\sin x}{x^{3}}=\)

  • Question 6
    1 / -0

    \(\lim _{x \rightarrow 0} \frac{x \tan 2 x-2 x \tan x}{(1-\cos 2 x)^{2}}=\)

  • Question 7
    1 / -0

    \(\lim _{x \rightarrow 0} \frac{1-\cos 2 x+\tan ^{2} x}{x \sin x}\)

  • Question 8
    1 / -0

    \(\lim _{x \rightarrow 0} \frac{\sqrt{\cos x}-\sqrt[3]{\cos x}}{\sin ^{2} x}=\)

  • Question 9
    1 / -0

    If the function defined by \(f(x)=\frac{\sin 3(x-p)}{\sin 2(x-p)}\) for \(x \neq p\) is continuous at \(x=p\) then \(f(p)=\)

  • Question 10
    1 / -0

    If \(f(x)=x^{2}-3 x+5\), then \(\lim _{x \rightarrow 2} \frac{f(x)-f(2)}{x-2}\)

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now