
When S1 and S2 both open and jockey has no deflection then let current in upper circuit is ” i”.\(\mathrm{R}=\frac{\delta \mid}{\mathrm{A}}\)
So, \(\mathrm{R}_{\mathrm{A}}=10\)
\(\mathrm{R}_{\mathrm{B}}=30\)
\(\mathrm{R}_{\mathrm{C}}=6 \Omega\)
\(\mathrm{R}_{\mathrm{D}}=10\)
\(\mathrm{R}_{\mathrm{eq}}=4+1+1+\frac{3.6}{3+6}=8 \Omega\)
\(\mathrm{i}=\frac{\mathrm{V}}{\mathrm{R}_{\mathrm{eq}}}=\frac{8}{8}=1\) Ampere
When jockey is touched, and there is no deflection then potential difference between ‘A’ and the point should be same in both path-

So, in lower circuit as S2 is open
No current will flow in this circuit
⇒Potential difference between A and P
Will be = 2V

⇒i1 . 3= i2 . 6 and i1 + i2 = 1
\(\Rightarrow \mathrm{i}_{1}=\frac{2}{3} \mathrm{A}, \quad \mathrm{i}_{2}=\frac{1}{3} \mathrm{A}\)
Potential difference between A and P
\(\Rightarrow \mathrm{V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{p}}=\mathrm{i} .1+\mathrm{i}_{2} \cdot\left(\mathrm{R}^{\prime}\right)\)
\(\Rightarrow 2=1+R^{\prime}\left(\frac{1}{3}\right)\)
\(\Rightarrow \quad \mathbb{R}^{\prime}=3\)
For this point ‘P’ should be half way in wire C.
Similarly when jockey touched on wire ‘B’, Null point will be obtained at middle point of wire B.
Hence, the correct option is A.