Self Studies

Triangles Test - 32

Result Self Studies

Triangles Test - 32
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$\triangle ABC\sim \triangle  PQR,$$  $$ \cfrac{ar(ABC)}{ar(PQR)}=\cfrac{9}{4}$$,  $$AB=18$$ $$cm$$ and $$BC=15$$ $$cm$$, then $$QR$$ is equal to:
    Solution
    Given, $$\triangle ABC \sim \triangle PQR$$,
    Then, $$\dfrac{ar(ABC)}{ar(PQR)} = \dfrac{AB^2}{PQ^2} = \dfrac{BC^2}{QR^2} = \dfrac{AC^2}{PR^2}$$
    $$\dfrac{9}{4} = \dfrac{BC^2}{QR^2}$$
    $$\dfrac{9}{4} = \dfrac{15^2}{QR^2}$$
    $$QR^2 = \dfrac{4 \times 225}{9}$$
    $$QR^2 = 100$$
    $$QR = 10 \ cm$$
  • Question 2
    1 / -0
    It is given that $$\triangle ABC \sim \triangle PQR$$, $$A(\triangle ABC)=36{cm}^{2}$$ and $$A(\triangle PQR)=25{cm}^{2}$$. If $$QR=6$$cm, find the length of $$BC$$.

    Solution

    We know that the area of similar triangles ae proportional to the squares of their corresponding sides
    $$\therefore$$ $$\cfrac{A (\triangle ABC)}{A(\triangle PQR)}=\cfrac{{BC}^{2}}{{QR}^{2}}$$
    Let $$BC=x$$ cm. Then,
    $$\cfrac {36}{25}=\cfrac{{x}^{2}}{{6}^{2}}$$ 

    $${x}^{2}=\cfrac{36\times 36}{25}$$

    $$x=(\cfrac{6\times 6}{5})$$

    $$x=\cfrac{36}{5}=7.2$$ cm.

  • Question 3
    1 / -0
    $$\triangle ABC$$ and $$\triangle BDE$$ are two equilateral triangles such that $$D$$ is the midpoint of $$BC$$. Ratio of $$A(\triangle ABC)$$ and $$A(\triangle BDE)$$ is:

    Solution

    Given: $$\triangle ABC$$ and $$\triangle BDE$$ are equilateral triangles.
    D is midpoint of BC.
    Since, $$\triangle ABC$$ and $$\triangle BDE$$ are equilateral triangles.

    All the angles are $$60^{\circ}$$ and hence they are similar triangles.
    Ratio of areas of similar triangles is equal to ratio of squares of their sides:

    Now, $$\dfrac{A(\triangle BDE)}{A( \triangle ABC)} = \dfrac{BC^2}{BD^2}$$

    $$\dfrac{A (\triangle ABC)}{A(\triangle BDE)} = \dfrac{(2 BD)^2}{BD^2}$$         ....Since $$BC = 2 BD$$

    $$\dfrac{A( \triangle ABC)}{A(\triangle BDE)} = 4 : 1$$

  • Question 4
    1 / -0
    Let $$\triangle ABC\sim \triangle DEF$$ and their areas be, respectively $$64\ {cm}^{2}$$ and $$121\ {cm}^{2}$$. If $$EF=15.4\ cm$$, find $$BC$$.
    Solution
    $$\triangle ABC\sim \triangle DEF\quad $$ (Given)
    $$\Rightarrow \cfrac { ar(ABC) }{ ar(DEF) } =\cfrac { { BC }^{ 2 } }{ { EF }^{ 2 } } $$ (ratio of Areas of Similar triangles are equal to ratio of squares of corresponding sides)
    $$\Rightarrow \quad \cfrac { 64 }{ 121 } =\cfrac { { BC }^{ 2 } }{ { EF }^{ 2 } } \quad { \left\{ \cfrac { BC }{ EF }  \right\}  }^{ 2 }={ \left\{ \cfrac { 8 }{ 11 }  \right\}  }^{ 2 }$$
    $$\Rightarrow \quad \cfrac { BC }{ EF } =\cfrac { 8 }{ 11 } \quad \Rightarrow \quad BC=\cfrac { 8 }{ 11 } \times EF$$
    $$\Rightarrow \quad BC=\cfrac { 8 }{ 11 } \times 15.4cm=11.2cm$$
  • Question 5
    1 / -0
    In figure, $$DE\parallel BC$$. Find the length of $$EC$$.

    Solution
    In figure $$DE\parallel BC$$
    $$\Rightarrow$$ $$\cfrac{AD}{DB}=\cfrac{AE}{EC}$$ (By basic proportionality theorem)
    $$\Rightarrow$$ $$\cfrac{1.5}{3}=\cfrac{1}{EC}$$
    ($$\because AD=1.5cm, DB=3cm$$ and $$AE=1cm$$)
    $$\Rightarrow$$ $$EC=\cfrac{3}{1.5}=2cm$$.
  • Question 6
    1 / -0
    In the diagram given below, $$\displaystyle \angle ABD=\angle CDB=\angle PQD=90^{\circ}.$$  If $$ AB:CD=3:1,$$ the ratio of CD : PQ is 

    Solution
    $$\triangle s ABD \ ,\ BDC \ ,\ DPQ$$ are similar by AAA, as the corresponding angles are equal.

    $$\dfrac{AB}{PQ}=\dfrac{BD}{QD}$$ ..........(1)

    $$\dfrac{CD}{PQ}=\dfrac{BD}{BQ}$$ ..........(ii)
    Given,
    $$\dfrac{AB}{CD}=\dfrac{3}{1}$$ $$\implies AB=3CD$$ ..........(iii)
    Substitute for $$BD$$ in (i) from (ii)

    $$\dfrac{AB}{PQ}=\dfrac{CD}{PQ}\dfrac{BQ}{QD}$$

    $$3CD=\dfrac{CD}{1}\dfrac{BQ}{QD}$$------------(from(iii))

    $$\dfrac{BQ}{QD}=\dfrac{3}{1}$$------------(iv)
    Consider,
    $$\dfrac{CD}{PQ}=\dfrac{BD}{BQ}$$

    $$\dfrac{CD}{PQ}=\dfrac{BQ+QD}{BQ}=1+\dfrac{QD}{BQ}$$

    $$\dfrac{CD}{PQ}=1+\dfrac{1}{3}=\dfrac{4}{3}$$

    $$\dfrac{CD}{PQ}=\dfrac{1}{0.75}$$
    $$\therefore CD:PQ=1:0.75$$.   
  • Question 7
    1 / -0
    In $$\displaystyle \Delta ABC, PQ\parallel BC$$ and area of quadrilateral $$PBCQ = 42\ sq. cm$$. If $$AP : PB = 2 : 3,$$ then find the area of $$\displaystyle \Delta APQ$$.

    Solution
    In $$\triangle ABC$$, $$PQ \parallel BC$$

    $$\angle BAC = \angle PAQ$$ ...... (Common angle)

    $$\angle ABC = \angle APQ$$ ....... (Corresponding angles)

    Thus, $$\triangle ABC \sim \triangle APQ$$

    $$\Rightarrow \dfrac{Ar(\triangle ABC)}{Ar(\triangle APQ)} = \dfrac{AB^2}{AP^2}$$

    $$\Rightarrow \dfrac{Ar(\triangle APQ) + Ar( PBCQ)}{Ar(\triangle APQ)} = \dfrac{25}{4}$$

    $$\Rightarrow \dfrac{x + 42}{x} = \dfrac{25}{4}$$

    $$\Rightarrow 4x + 168 = 25x$$

    $$\Rightarrow 21x = 168$$

    $$\Rightarrow x = 8$$

    Thus, $$Ar(\triangle APQ) = 8\ sq. cm$$ 
  • Question 8
    1 / -0
    The corresponding sides of two similar triangles are in the ratio $$2$$ : $$3$$. If the area of the smaller triangle is $$12$$ the area of the larger is
    Solution
    The area of similar triangles is in the ratio of the square of the corresponding sides.

    Hence,
    $$\dfrac{\text{Area of smaller triangle}}{\text{Area of larger triangle}} = \left(\dfrac{2}{3}\right)^2$$
    $$\Rightarrow \dfrac{12}{\text{Area of larger triangle}} = \dfrac{4}{9}$$
    $$\Rightarrow \text{Area of larger triangle}  = 27$$

    Hence, option $$B$$ is correct.
  • Question 9
    1 / -0
    In a $$\displaystyle \Delta ABC$$, $$D$$ is any point on $$AB$$ and $$DE || BC $$ meets $$AC$$ at E if $$AD = 2.5, DB = 6$$ cm and $$AE = 3$$ cm, then $$EC = $$

    Solution

    Given: In $$\triangle ABC $$

    $$DE \parallel BC$$

    Then, $$\dfrac{AD}{DB} = \dfrac{AE}{EC}$$   ...(Basic Proportionality theorem)

    $$\dfrac{2.5}{6} = \dfrac{3}{EC}$$         

    $$EC = \dfrac{18}{2.5}$$.

    $$EC = 7.2$$.

  • Question 10
    1 / -0
    If $$\triangle ABC$$ is right angled at $$B$$ and $$M,$$ $$N$$ are the midpoints of $$AB$$ and $$BC$$ respectively, then $$4\left ( AN^{2}+CM^{2} \right )=$$
    Solution
    Given, $$\triangle ABC$$, $$M$$ is mid point of $$AB$$ and $$N$$ is mid point of $$BC.$$
    In $$\triangle ABN,$$
    $$AN^2 = AB^2 + BN^2$$ (Pythagoras Theorem)
    $$AN^2 = AB^2 + (\dfrac{BC}{2})^2$$   $$....(1)$$

    In $$\triangle BMC,$$
    $$MC^2 = BM^2 + BC^2$$ (Pythagoras Theorem)
    $$MC^2 = BC^2 + (\dfrac{AB}{2})^2$$  $$....(2)$$
    Add $$(1)$$ and $$(2),$$
    $$AN^2 + MC^2 = AB^2 + (\dfrac{BC}{2})^2 +BC^2 + (\dfrac{AB}{2})^2$$

    $$AN^2  + MC^2 = \dfrac{5}{4} AB^2 + \dfrac{5}{4} BC^2$$

    $$4(AN^2 + MC^2) = 5 (AB^2 + BC^2)$$ 

    $$4 (AN^2 + MC^2) = 5 AC^2$$ (Pythagoras Theorem in $$\triangle ABC$$)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now