Given that $$ST=TR$$ So, T is the midpoint of SR.Now, we know that a diagonal divider the parallelogram into two triangles of equal area.
So, Area of $$\triangle PQS=Area \, of \triangle QRS=\dfrac{1}{2}$$ [area of parallelogram PQRS] -----------(1)
Now, in $$\triangle QRS,QT$$ divides it into two $$\triangle$$. Also height of $$\triangle QST= height \, of \triangle QTR.$$
So, Area of $$\triangle QST=Area \, of \triangle QTR=\dfrac{1}{2}[area \, of \triangle QRS]$$ -----------(2)
from (1),
Area of $$\triangle QRS=\dfrac{1}{2}$$ [area of parallelogram PQRS] ---------(3)
From (2) Area of $$QST=\dfrac{1}{2}[area \, of \triangle QRS]$$
From (2),
Area of $$\triangle QST=\dfrac{1}{2}[area \, of \triangle QRS]$$
$$\Rightarrow $$ Area of $$\triangle QRS=2[area \, of \triangle QST]$$ --------(4)
LHS of (3) and (4) are some so , equating the RHS of (3) and (4) we get.
$$\dfrac{1}{2}[area of parallelogram PQRS]$$ $$=2$$ [area of $$\triangle QST$$]
$$\Rightarrow $$ Area of parallelogram $$PQRS=4$$ (area of \triangle QST)
$$\Rightarrow \dfrac{Area \, of \triangle QST}{Area \, of \, parallelogram PQRS}=\dfrac{1}{4}$$
$$\therefore $$ The required ratio is $$1:4$$