Self Studies

Triangles Test ...

TIME LEFT -
  • Question 1
    1 / -0

    In figure, it $$DE\parallel BC$$, then $$x$$ will be:

  • Question 2
    1 / -0

    In $$\triangle ABC$$ and $$\triangle DEF$$ if $$\cfrac{AB}{DE}=\cfrac{BC}{FD}$$ then they will be similar if:

  • Question 3
    1 / -0

    If one angle of a triangle is equal to the sum of the other two angles then the triangle is:

  • Question 4
    1 / -0

    In $$\triangle ABC$$, given below, $$AB= 8\text{ cm}$$, $$BC= 10\text{ cm}$$ and $$AC= 6\text{ cm}$$. If a point $$P$$ lies on $$AB$$ and $$Q$$ on $$AC$$ such that $$PQ \parallel BC$$ and $$PQ = 5\text{ cm}$$, then find $$AP$$.  

  • Question 5
    1 / -0

    In triangle ABC, AD$$=$$DB, DE is parallel to BC, and the area of triangle ABC is $$40$$. What is the area of triangle ADE?

  • Question 6
    1 / -0

    Match the column.

    1. In $$\displaystyle \Delta ABC$$ and $$\displaystyle \Delta PQR$$,
    $$\displaystyle \frac{AB}{PQ}=\frac{AC}{PR},\angle A=\angle P$$
    (a) AA similarity criterion 
    2. In $$\displaystyle \Delta ABC$$ and $$\displaystyle \Delta PQR$$,
    $$\displaystyle \angle A=\angle P,\angle B=\angle Q$$

    (b) SAS similarity criterion 
    3. In $$\displaystyle \Delta ABC$$ and $$\displaystyle \Delta PQR$$,
    $$\displaystyle \frac{AB}{PQ}=\frac{AC}{PR}=\frac{BC}{QR}$$
    $$\angle A=\angle P$$
    (c) SSS similarity criterion 
    4. In $$\displaystyle \Delta ACB,DE||BC$$
    $$\displaystyle \Rightarrow \frac{AD}{BD}=\frac{AE}{CE}$$
    (d) BPT

  • Question 7
    1 / -0

    PQRS is a parallelogram and ST$$=$$TR. What is the ratio of the area of triangle $$QST$$ to the area of the parallelogram?

  • Question 8
    1 / -0

    Let $$WXYZ$$ be a square. Let $$P,Q,R$$ be the mid points of $$WX, XY$$ and $$ZW$$ respectively and $$K,L$$ be the mid-points of $$PQ$$ and $$PR$$ respectively. What is the value of $$\cfrac { area\quad of\quad triangle\quad PKL }{ area\quad of\quad square\quad WXYZ } $$?

  • Question 9
    1 / -0

    Three circular laminas of the same radius are cut out from a larger circular lamina. When the radius of each lamina cut out is the largest possible, then what is the ratio (approximate) of the area of the residual piece of the original lamina to its original total area?

  • Question 10
    1 / -0

    In $$\Delta ABC,\,\,if\,\,D\,\,and\,\,E$$ are mid points of BC and AD respectively such that $$ar\left( {AEC} \right) = 4c{m^2}$$ then $$ar\left( {BEC} \right) = $$

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now