Self Studies

Number Theory Test 1

Result Self Studies

Number Theory Test 1
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Let $$\alpha,\ \beta$$ be real and $$\mathrm{z}$$ be a complex number. If $$\mathrm{z}^{2}+\alpha \mathrm{z}+\beta=0$$ has two distinct roots on the line $$Re(z) =1$$, then it is necessary that: 

  • Question 2
    1 / -0
    Let z be a complex number such that $$\left|\dfrac{z-i}{z+2i}\right|=1$$ and $$|z|=\dfrac{5}{2}$$. Then the value of $$|z+3i|$$ is?
    Solution
    Given $$\left|\dfrac{z - i}{z + 2 i } \right| = 1$$

    $$\Rightarrow |z - i| = |z + 2i|$$

    Let $$z = x + iy$$

    So, $$x^2 + (y- 1)^2 = x^2 + (y + 2)^2$$

    $$-2y + 1 = 4y + 4$$

    $$6y = -3 \Rightarrow y = \dfrac{-1}{2}$$

    $$x^2 + y^2 = \dfrac{25}{4} \Rightarrow x^2 = \dfrac{24}{4} = 6$$

    $$z = \pm \sqrt{6} - \dfrac{i}{2}$$

    $$|z + 3i| = \sqrt{6 + \dfrac{25}{4}} = \sqrt{\dfrac{49}{4}} = \dfrac{7}{2}$$

    $$\therefore$$ $$\boxed{|2 + 3i| = \dfrac{7}{2}}.....Answer$$

    Hence option $$'A'$$ is the answer.
  • Question 3
    1 / -0
    If $$ z$$ is a complex number such that $$ |z|\geq 2$$, then the minimum value of $$ |z+\displaystyle \frac{1}{2}|$$
    Solution
    Given  $$ |z|\geq 2$$

    $$\therefore |z+\displaystyle \frac{1}{2}|\geq \left | |z|-|\frac{1}{2}|\right |$$   $$[\because | {z_1+z_2}|\geq| z_1|-| z_2|]$$

    $$\therefore |z+\displaystyle \frac{1}{2}|\geq |2-\displaystyle \frac{1}{2}|\geq \frac{3}{2}$$

    Hence,minimum value of $$ |z+\displaystyle \frac{1}{2}|$$ is $$ \displaystyle \frac{3}{2}$$ which indicates that it lies in the interval $$(1,2)$$
  • Question 4
    1 / -0
    If $$z = x + iy$$ and $$\omega = \dfrac{(1 -iz)}{(z-i)}$$, then $$\left|\omega\right| = 1$$ implies that in the complex plane
    Solution
    Given   $$w=\dfrac { 1-iz }{ z-i } $$  and

    $$\left| w \right| =1$$

    $$\Rightarrow \left| \dfrac { 1-iz }{ z-i }  \right| =1$$       ...(1)

    Substitute $$z=x+iy$$ in equation (1)

    $$\Rightarrow \left| \dfrac { 1-i\left( x+iy \right)  }{ \left( x+iy \right) -i }  \right| =1$$

    $$\Rightarrow \left| 1+y-ix \right| =\left| x+i\left( y-1 \right)  \right| \\ \Rightarrow { \left( 1+y \right)  }^{ 2 }+{ x }^{ 2 }={ x }^{ 2 }+{ \left( y-1 \right)  }^{ 2 }\\ \Rightarrow y=0$$

    Therefore z lies on the real axis.

    Ans: B
  • Question 5
    1 / -0
    Let z be a complex number such that the imaginary part of z is nonzero and a = $$z^2 + z + 1$$ is real. Then a cannot take the value
    Solution
    Let $$z=\alpha+i\beta$$. Then 

    $$Im(z^2+z+1)=2\alpha\beta+\beta=0 $$

    $$\Rightarrow \alpha=-\dfrac{1}{2}$$ since $$\beta\neq0$$. Then 

    $$a=\alpha^2-\beta^2+\alpha+1$$

    $$a=\dfrac{3}{4}+\beta$$

    $$a\neq\dfrac{3}{4}$$.   $$[\because \beta\neq0]$$
  • Question 6
    1 / -0
    $$\displaystyle \left|\dfrac{\sqrt{3}+i}{(1+i)(1+\sqrt{3}i)}\right|=$$
    Solution
    The value of $$\displaystyle \left |\frac{\sqrt{3} + i}{(1 + i)(1 + \sqrt{3}i)} \right |$$
    $$ = \dfrac{|\sqrt{3} + i|}{|1 + i||1 + \sqrt{3}i|} = \dfrac{\sqrt{3 + 1}}{\sqrt{1 + 1} \times \sqrt{1 + 3}} $$
    $$= \dfrac{2}{2\sqrt{2}} $$
    $$= \dfrac{1}{\sqrt{2}}$$ 
  • Question 7
    1 / -0
    The modulus of $$\sqrt{2}i-\sqrt{-2}i$$ is:
    Solution
    Let $$z=\sqrt{2}i-\sqrt{-2}i$$
    $$\Rightarrow z=\sqrt{2}i-\sqrt{2}i^2$$
    $$\Rightarrow z=\sqrt{2}+\sqrt{2}i$$
    Now, $$|z|=\sqrt{2+2}=2$$
  • Question 8
    1 / -0
    If $$z =3+5i$$, then $$z^3+z+198=$$
    Solution
    $$z=3+5i$$

    $$z^{3}=(3+5i)^{3}$$

    $$=3^{3}+3.3^{2}(5i)+3.3(5i)^{2}+(5i)^{3}$$

    $$=27-125i+135i-225$$

    $$=-225+27+(135-125)i$$

    $$=-198+10i$$

    $$\therefore z^{3}+z+198$$

    $$=-198+10i+3+5i+198$$

    $$=3+15i$$

  • Question 9
    1 / -0
    If $$z=2-3i$$ then $$z^2-4z+13=$$
    Solution
    $$z=2-3i$$
    $$z^{2}=2^{2}-3^{2}-12i$$
    $$=-5-12i$$
    $$\therefore z^{2}-4z+13$$
    $$=(-5-12i)-4(2-3i)+13$$
    $$=-5-12i-8+12i +13$$
    $$=-13+13$$
    $$=0$$

  • Question 10
    1 / -0
    The complex number $$\displaystyle \frac{1+2i}{1-i}$$ lies in the quadrant :
    Solution
    Let  $$z =\dfrac{1+2i}{1-i}$$

    $$\Rightarrow z =\dfrac{(1+2i)}{1-i}\times \dfrac{1+i}{1+i}$$

    $$= \dfrac{1+2i+i+2i^2}{1-i^2}$$

    $$=\dfrac{1+3i-2}{1+1}$$ ............ $$[\because i^2 = -1]$$

    $$\Rightarrow z =\dfrac{-1+3i}{2}$$

    $$ =-\dfrac{1}{2}+\dfrac{3}{2}i $$
    $$=x+iy$$
    Clearly $$x<0$$ and $$y>0$$
    Hence $$z$$ lies in $$\text{II}$$ quadrant
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now