Self Studies

Number Theory T...

TIME LEFT -
  • Question 1
    1 / -0

    Let $$\alpha,\ \beta$$ be real and $$\mathrm{z}$$ be a complex number. If $$\mathrm{z}^{2}+\alpha \mathrm{z}+\beta=0$$ has two distinct roots on the line $$Re(z) =1$$, then it is necessary that: 

  • Question 2
    1 / -0

    Let z be a complex number such that $$\left|\dfrac{z-i}{z+2i}\right|=1$$ and $$|z|=\dfrac{5}{2}$$. Then the value of $$|z+3i|$$ is?

  • Question 3
    1 / -0

    If $$ z$$ is a complex number such that $$ |z|\geq 2$$, then the minimum value of $$ |z+\displaystyle \frac{1}{2}|$$

  • Question 4
    1 / -0

    If $$z = x + iy$$ and $$\omega = \dfrac{(1 -iz)}{(z-i)}$$, then $$\left|\omega\right| = 1$$ implies that in the complex plane

  • Question 5
    1 / -0

    Let z be a complex number such that the imaginary part of z is nonzero and a = $$z^2 + z + 1$$ is real. Then a cannot take the value

  • Question 6
    1 / -0

    $$\displaystyle \left|\dfrac{\sqrt{3}+i}{(1+i)(1+\sqrt{3}i)}\right|=$$

  • Question 7
    1 / -0

    The modulus of $$\sqrt{2}i-\sqrt{-2}i$$ is:

  • Question 8
    1 / -0

    If $$z =3+5i$$, then $$z^3+z+198=$$

  • Question 9
    1 / -0

    If $$z=2-3i$$ then $$z^2-4z+13=$$

  • Question 10
    1 / -0

    The complex number $$\displaystyle \frac{1+2i}{1-i}$$ lies in the quadrant :

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now