Taking $$\left | z-1 \right |+\left | z+2 \right |$$
We know
$$\left | z_{1} \right |+\left | z_{2} \right |\geqslant \left | z_{1}+z_{2} \right |$$
$$\left | z-1 \right |+\left | z+2 \right |=\left | -z+1 \right |+\left | z+2 \right |\geqslant \left | 1-\not{z}+\not{z}+2 \right |$$
$$\geqslant 3$$
And clearly the value 3 occurs
When z=0, -2, 1
Now, $$\left | z \right | is\ minimum\ at \ z=0$$
Hence minimum value $$ = $$ 3
Similarly
Taking $$\left | z \right |+\left | z-1 \right |$$
$$\Rightarrow \left | z \right |+\left | z-1 \right |= \left | z \right |+\left | 1-z \right |\geqslant \left | \not{z}+1-\not{z} \right |$$
$$=1$$
And value 1 occurs at$$ z=0, z=1 or z= z=\frac{1}{2}$$
But $$ \left | z+2 \right |$$ is minimum at $$z=0$$
Hence minimum value $$= i+ \left | z+2 \right |$$
$$=3 at z=0$$
Similarly
Taking $$\left | z \right |+\left | z+2 \right |$$
$$\Rightarrow \left | z \right |+\left | z+2 \right |= \left | z \right |+\left | 2-z \right |\geqslant \left | \not{z}-2-\not{z} \right |$$
$$=2$$
But value 2 occurs at o, -1 and -2
But $$ \left | z-1 \right |$$ is minimum at z$$=0$$
Hence minimum
value $$ = 2+ \left | z-1 \right |$$
$$=3$$