Self Studies

Number Theory Test 17

Result Self Studies

Number Theory Test 17
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

     lf $$\log_{\frac{1}{2}}|\mathrm{z}-2|>\log_{\frac{1}{2}}|z|$$ then
    Solution
    $$ Let  \quad z= x+iy $$
    $$\log_{\frac{1}{2}}|\mathrm{z}-2|>\log_{\frac{1}{2}}|z|$$
    $$\Rightarrow |\mathrm{z}-2| < |z|$$
    $$\Rightarrow |x - 2 + iy| < |x + iy|$$
    $$\Rightarrow \sqrt{x^2 - 4x + 4 + y^2} < \sqrt{x^2 + y^2}$$
    $$\Rightarrow -4x + 4 < 0 $$
    $$\Rightarrow x > 1.$$
  • Question 2
    1 / -0

    The minimum value of $$f(z)=|\mathrm{z}|+|\mathrm{z}-1|+|z+2|$$ is
    Solution
    Taking  $$\left | z-1 \right |+\left | z+2 \right |$$

    We know

    $$\left | z_{1} \right |+\left | z_{2} \right |\geqslant \left | z_{1}+z_{2} \right |$$

    $$\left | z-1 \right |+\left | z+2 \right |=\left | -z+1 \right |+\left | z+2 \right

    |\geqslant \left | 1-\not{z}+\not{z}+2 \right |$$

    $$\geqslant 3$$

    And clearly the value 3 occurs

    When z=0, -2, 1

    Now, $$\left | z \right | is\  minimum\  at \ z=0$$


    Hence minimum value $$ = $$ 3


    Similarly


    Taking  $$\left | z \right |+\left | z-1 \right |$$


    $$\Rightarrow \left | z \right |+\left | z-1 \right |= \left | z \right |+\left | 1-z \right |\geqslant \left | \not{z}+1-\not{z} \right |$$

    $$=1$$

    And value 1

    occurs at$$ z=0, z=1 or z= z=\frac{1}{2}$$


    But  $$ \left | z+2 \right |$$ is minimum at $$z=0$$


    Hence minimum value $$= i+  \left | z+2 \right |$$

    $$=3 at z=0$$

    Similarly

    Taking  $$\left | z \right |+\left | z+2 \right |$$

    $$\Rightarrow \left | z \right |+\left | z+2 \right |= \left | z \right |+\left | 2-z \right |\geqslant \left | \not{z}-2-\not{z} \right |$$

    $$=2$$

    But value 2 occurs at o, -1 and -2

    But  $$ \left | z-1 \right |$$ is minimum at z$$=0$$

    Hence minimum


    value $$ = 2+  \left | z-1 \right |$$



    $$=3$$

  • Question 3
    1 / -0
    The real value of $$\theta$$ for which the expression, $$\displaystyle \frac{1+i\cos\theta}{1-2i\cos\theta}$$ is real number is
    Solution
    Let $$z=\cfrac{1+i\cos\theta}{1-2i\cos\theta}$$
    $$=\cfrac{(1+i\cos\theta)(1+2i\cos\theta)}{(1-2i\cos\theta)(1+2i\cos\theta)}$$
    $$=\cfrac{1-2\cos^{2}\theta+i3\cos\theta}{1+4\cos^{2}\theta}$$
    $$=\cfrac{1-2\cos^{2}\theta}{1+4\cos^{2}\theta}+i\left (\dfrac{3\cos\theta}{1+4\cos^{2}\theta}\right)$$
    If the above complex number is purely real, then
    $$Im(z)=0$$
    $$3\cos\theta=0$$
    $$\theta=\cfrac{(2n\pm1)\pi}{2}$$, where $$n\epsilon N$$
  • Question 4
    1 / -0

    The region represented by z such that $$\left | \dfrac{\mathrm{z}-a}{z+a} \right |=1({\rm Im} (a) = 0)$$ is
    Solution
    Let $$z=x+iy$$

    $$\Rightarrow

    \left | (x-a)+iy \right |=\left | (x+a)+iy \right |$$

    $$\Rightarrow

     (x-a)^{2}+\not{ y^{2}} =(x+a)^{2}+\not{ y^{2}}$$

    $$\Rightarrow

    \not{ x^{2}} +\not{ a^{2}} -2ax =\not{ x^{2}} +\not{ a^{2}} +2ax$$

    $$\Rightarrow 0$$

  • Question 5
    1 / -0

    lf $$\displaystyle \log_{(\frac{1}{3})}|z+1|>\log_{(\frac{1}{3})}|z-1|$$, then
    Solution
     $$\displaystyle \log(\frac{1}{3})|z+1|>\log(\frac{1}{3})|z-1|$$
    $$\Rightarrow |z + 1| < |z - 1|$$
    $$\Rightarrow (x^2 + 2x + 1 + y^2) < (x^2 - 2x + 1 + y^2)$$
    $$\Rightarrow | 4x | < 0$$
    Thus, $$Re(z) < 0.$$
  • Question 6
    1 / -0

    $$ \left | \displaystyle \frac{1}{(1-i)^{2}}-\frac{1}{(1+i)^{2}}\right |=$$
    Solution
     

    $$\left |

    \dfrac{1}{(1-i)^{2}}-\dfrac{1}{(1+i)^{2}} \right |=\left |

    \dfrac{(1+i)^{2}-(1-i)^{2}}{\left ( (1-i)(1+i) \right )^{2}} \right |$$

    $$=\left |

    \dfrac{\not{1}+2i-\not{1}-(\not{1}-2i)-\not{1} }{(1^{2}+1^{2})^{2}}\right |$$

    $$=\left |

    \dfrac{4i}{4} \right |=1$$


  • Question 7
    1 / -0
    Number of solutions of the equation $$|z|^{2}+7{z}=0$$ is
    Solution
    Let $$ \ z=x+iy$$
    Then,$$\left | z \right |^{2}+7z=x^{2}+y^{2}+7(x+iy)=0$$
    $$\Rightarrow x^{2}+y^{2}+7x=0$$ & $$7y=0$$
    $$\Rightarrow x^{2}+ 7x=0$$ and $$ y=0$$
    $$\Rightarrow x=-7\ or\ x=0$$ and $$y=0$$
    So, solutions are $$z=-7$$ or $$z=0$$
    Hence, two solutions.
  • Question 8
    1 / -0

    lf $$\displaystyle \log_{\sqrt{3}}\frac{|z^{2}|-|z|+1}{2+|z|}<2$$, then locus of $${z}$$ is
    Solution
    Given, $$\displaystyle \log_{\sqrt{3}}\frac{|z^{2}|-|z|+1}{2+|z|}<2$$
    Therefore, $$\dfrac{|z|^{2}-|z|+1}{2+|z|}< \sqrt{3}^2$$
    $$\Rightarrow |z^{2}|-|z|+1<6+3|z|$$
    $$|z|^2 -4|z| -5<0$$
    $$-1<|z|<5$$
    But $$|z|<0$$ is not possible.
  • Question 9
    1 / -0
    The given figure represents a multiplication operation, where each alphabet represents a different number, then what is the value of A.

    Solution
    As $$A+7=9$$

    $$A=9-7$$

    $$A=2$$

    Hence option- $$C$$ 
  • Question 10
    1 / -0

    lf $$Z_{1},Z_{2}$$ are two unimodular Complex numbers then $$ \left |\displaystyle \frac{1}{Z_{1}}+\frac{1}{Z_{2}} \right|=$$
    Solution
    $$\left |\dfrac{1}{z_1}+\dfrac{1}{z_2}\right|$$
    $$=\left|\dfrac{z_1+z_2}{z_1z_2}\right|$$
    $$=\dfrac{\left|z_1+z_2\right|}{\left|z_1\right|\left|z_2\right|}$$
    $$= \dfrac{|z_1+z_2| }{1\times 1}$$
    $$=|z_1+z_2|$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now