Self Studies

Number Theory T...

TIME LEFT -
  • Question 1
    1 / -0


     lf $$\log_{\frac{1}{2}}|\mathrm{z}-2|>\log_{\frac{1}{2}}|z|$$ then

  • Question 2
    1 / -0


    The minimum value of $$f(z)=|\mathrm{z}|+|\mathrm{z}-1|+|z+2|$$ is

  • Question 3
    1 / -0

    The real value of $$\theta$$ for which the expression, $$\displaystyle \frac{1+i\cos\theta}{1-2i\cos\theta}$$ is real number is

  • Question 4
    1 / -0


    The region represented by z such that $$\left | \dfrac{\mathrm{z}-a}{z+a} \right |=1({\rm Im} (a) = 0)$$ is

  • Question 5
    1 / -0


    lf $$\displaystyle \log_{(\frac{1}{3})}|z+1|>\log_{(\frac{1}{3})}|z-1|$$, then

  • Question 6
    1 / -0


    $$ \left | \displaystyle \frac{1}{(1-i)^{2}}-\frac{1}{(1+i)^{2}}\right |=$$

  • Question 7
    1 / -0

    Number of solutions of the equation $$|z|^{2}+7{z}=0$$ is

  • Question 8
    1 / -0


    lf $$\displaystyle \log_{\sqrt{3}}\frac{|z^{2}|-|z|+1}{2+|z|}<2$$, then locus of $${z}$$ is

  • Question 9
    1 / -0

    The given figure represents a multiplication operation, where each alphabet represents a different number, then what is the value of A.

  • Question 10
    1 / -0


    lf $$Z_{1},Z_{2}$$ are two unimodular Complex numbers then $$ \left |\displaystyle \frac{1}{Z_{1}}+\frac{1}{Z_{2}} \right|=$$

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now