Self Studies

Number Theory Test 19

Result Self Studies

Number Theory Test 19
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$z = x + iy$$ and $$x^2 + y^2 = 16$$, then the range of $$\left|\left|x\right| - \left|y\right|\right|$$ is 
    Solution
    $$z=x+iy$$
    And $$|z|^{2}=16$$
    $$|z|=4$$
    If z is purely real, $$x=\pm4$$ and $$||x|-|y||=4$$ ...(i)
    If z is purely imaginary $$y=\pm4i$$ and $$||x|-|y||=4$$ ...(ii)
    Now if $$|x|=|y|$$
    Thus
    $$2x^{2}=2y^{2}=16$$
    $$x=y=\pm2\sqrt{2}$$
    Under such case
    $$||x|-|y||=0$$
    Hence the range of values of $$||x|-|y||$$ is $$[0,4]$$

  • Question 2
    1 / -0
    If $$\displaystyle z_1\neq -z_2$$ and $$\displaystyle |z_1+z_2|=\left| \frac{1}{z_1}+\frac{1}{z_2}\right| $$ then

    Statement 1: $$z_1z_2$$ is unimodular.

    Statement 2: Both $$z_1$$ and $$z_2$$ are unimodular.
    Solution

    $$|z_1+z_2|=\left|\displaystyle\frac { z_1+z_2 }{ z_1z_2 } \right|\\ \Longrightarrow |z_1+z_2|(1-\displaystyle\frac { 1 }{ |z_1z_2| } )=0\\ since\quad |z_1+z_2|\neq 0,\\ so,1=\displaystyle\frac { 1 }{ |z_1z_2| } \\ \Longrightarrow |z_1z_2|=1$$

    Hence the statement 1 is correct but statement 2 is false

  • Question 3
    1 / -0
    The complex number z satisfies the condition $$\displaystyle \left | z- \frac{25}{z} \right | = 24$$. The maximum distance from the origin of co-ordinates to the point z is
    Solution
    The maximum value would be when
    $$|z-\dfrac{25}{z}|$$
    $$=|z|-\dfrac{25}{|z|}=24$$
    $$=|z|^{2}-25=24|z|$$
    $$|z|^{2}-24|z|-25=0$$
    $$|z|^{2}-25|z|+|z|-25=0$$
    $$|z|(|z|-25)+1(|z|-25)=0$$
    $$(|z|+1)(|z|-25)=0$$
    $$|z|=-1$$ not possible 
    And $$|z|=25$$
  • Question 4
    1 / -0
    The roots of the equation $$z^n = (z + 1)^n$$ on the complex plane lie on the line
    Solution
    $$|\dfrac{z+1}{z}|^{n}=1$$
    Let $$n=1$$,
    $$|z+1|=|z|$$
    Let $$z=x+iy$$
    $$(x+1)^{2}=x^{2}$$
    $$(x+1)^{2}-x^{2}=0$$
    $$(2x+1)(1)=0$$
    $$2x+1=0$$
    Hence answer is A.
  • Question 5
    1 / -0
    If $$\left|z\right |^2 - 3 = 3\left|z\right|$$, then the value of $$\left|z\right|$$ is
    Solution
    $$|z|^{2}-3=3|z|$$ 
    $$|z|^{2}-3|z|-3=0$$
    $$|z|= \displaystyle \frac{3\pm\sqrt{21}}{2}$$
    $$|z|=\displaystyle \frac{3+\sqrt{21}}{2}$$
  • Question 6
    1 / -0
    Find the complex numbers z which simultaneously satisfy the equation $$\displaystyle \left | \frac{z - 12}{z - 8 i} \right | = \frac{5}{3}$$ and $$\displaystyle \left | \frac{z - 4}{z - 8} \right | = 1$$.
    Solution
    Put $$z=x+iy$$
    $$\displaystyle \left| \frac { z-4 }{ z-8 }  \right| =1\Rightarrow \left| \frac { x-4+iy }{ x-8+iy }  \right| =1\\ \Rightarrow { \left( x-4 \right)  }^{ 3 }+{ y }^{ 2 }={ \left( x-8 \right)  }^{ 2 }+{ y }^{ 2 }\\ \Rightarrow x=6$$

    With $$\displaystyle x=6,\left| \frac { z-12 }{ z-8i }  \right| =\frac { 5 }{ 3 } $$
    $$\displaystyle \Rightarrow \left| \frac { -6+iy }{ 6+i\left( y-8 \right)  }  \right| =\frac { 5 }{ 3 } \\ \Rightarrow 9\left( 36+{ y }^{ 2 } \right) =25\left[ 36+\left( y-8 \right) 2 \right] \\ \Rightarrow { y }^{ 2 }-25y+136=0\\ \Rightarrow y=17,8$$
    Hence the required numbers are 
    $$z=6+17i,6+8i$$
  • Question 7
    1 / -0
    If $$z$$ is a complex number such that $$-\pi / 2 \le$$ arg $$ z \le \pi / 2,$$ then which of the following inequality is true? 
    Solution
    Let $$z=\left| z \right| \left( \cos { A } +i\sin { A }  \right) \quad \quad \quad where\quad A=arg\left( z \right) ,\quad -\frac { \Pi  }{ 2 } \le A\le \frac { \Pi  }{ 2 }  $$

    $$\left| z-\bar { z }  \right| =\left| z \right| \left| \cos { A } +i\sin { A } -\left( \cos { A } -i\sin { A }  \right)  \right| =2\left| z \right| \left| i\sin { A }  \right| $$

    $$\Longrightarrow \left| z-\bar { z }  \right| =2\left| z \right| \left| \sin { A }  \right| $$

    $$for\quad -\frac { \pi  }{ 2 } \le A\le \frac { \pi  }{ 2 } \quad \quad \left| \sin { A }  \right| \le |A| $$

    $$\Longrightarrow \left| z-\bar { z }  \right| \le 2\left| z \right| \left| A \right| =\left| z \right| \left| A-\left( -A \right)  \right| $$

    $$\Longrightarrow \left| z-\bar { z }  \right| \le \left| z \right| \left| argz-arg\bar { z }  \right| $$

    Ans: A
  • Question 8
    1 / -0
    If $$i{ z }^{ 3 }+{ z }^{ 2 }-z+i=0$$, then 
    Solution
    Given $$i{ z }^{ 3 }+{ z }^{ 2 }-z+i=0\Rightarrow i{ z }^{ 2 }\left( z-i \right) -\left( z-i \right) =0$$
    $$\Rightarrow \left( z-i \right) \left( i{ z }^{ 2 }-1 \right) =0\Rightarrow z=i$$ or $$\displaystyle { z }^{ 2 }=\frac { 1 }{ i } =-i$$
    Now $$z=i\Rightarrow \left| z \right| =\left| i \right| =1$$
    and $${ z }^{ 2 }=-i\Rightarrow \left| { z }^{ 2 } \right| =\left| -i \right| \Rightarrow \left| { z }^{ 2 } \right| =1\Rightarrow \left| z \right| =1$$
    Thus, in both cases $$\left| z \right| =1$$
  • Question 9
    1 / -0
    Locate the complex number $$z = x + iy$$ for which $$log_{1/3} \{ log_{1/2} (|z|^2 + 4 |z| + 3) \} < 0$$
    Solution
    $$\log_{ 1/3 }\{ \log_{ 1/2 }(|z|^{ 2 }+4|z|+3)\} <0$$
    $$\Rightarrow \log_{ 1/2 }(|z|^{ 2 }+4|z|+3)>0$$
    $$\Rightarrow |z|^{ 2 }+4|z|+3<0$$
    $$\Rightarrow \left( \left| z \right| +1 \right) \left( \left| z \right| +3 \right) <0$$
    Since, $$\left| z \right| +1>0$$ and $$\left| z \right| +3>0$$
    Therefore, $$z$$ belongs to empty set.

    Ans: A
  • Question 10
    1 / -0
    Number of roots of the equation $$z^{10} - z^5 - 992 = 0$$ where real parts are negative is
    Solution
    We have,
    $$z^{10} - z^5 - 992 = 0$$
    Put $$z^5=u$$
    $$\Rightarrow u^2-u-992=0$$
    $$\Rightarrow u = \dfrac{1\pm\sqrt{1+ 4\times 992}}{2}$$
    $$\quad =\dfrac{1\pm 63}{2}=32, -31$$
    $$\Rightarrow z^5 =32, (-1)^531$$
    $$\Rightarrow z=(32)^{1/5}, -(31)^5$$
    Hence number of roots of $$z$$ having negative real parts is $$5$$
    corresponding to $$z^5 =-31$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now